
第 5 章

循 环 结 构

5.1 引 言

5.1.1 问题导入

 在第4章,我们学习了如何实现一个生成减法算式的程序。该程序能够随机生成一道

100以内(含0和100)的减法题目,并通过选择结构判断用户的答案,从而辅助用户进行减

法练习。然而,若需要程序在一次运行时生成多个减法算式以供用户连续练习,仅仅通过重

复编写生成算式的代码显然不够高效且难以维护。这种做法不仅导致程序冗长,而且在调

整生成算式数量时极为不便。
解决此类问题的关键在于实现代码的自动重复执行,这正是循环结构的用武之地。循环

是程序设计中的核心概念,它允许程序在满足特定条件时,重复执行某段代码块,直至达到预

定目标。Python提供了循环结构,如何使用循环结构来实现多个减法算式的生成呢? 如何灵

活控制代码的重复次数,以适应不同的需求? 接下来,我们将深入探讨Python中的循环结构,
学习如何利用它简化程序逻辑、提高代码的可读性和可维护性,并高效地实现更多功能。

5.1.2 知识结构导图

本章围绕如何发现重复操作中的规律,并使用循环结构来实现这些操作展开介绍。
Python提供了两种类型的循环:逻辑控制循环while和计数控制循环for。本章的知识结

构导图如图5.1所示。

图5.1 循环结构知识结构导图

88 Python 程序设计与数据分析（微课版）

5.2 while循环

5.2.1 while 循环初探

 while循环是一种基本的条件控制循环,当条件表达式为True时重复执行语句,直到

该条件变为False。其语法如下:

 while 条件表达式:

 语句块

其中,条件表达式被称为循环的继续条件,它是一个布尔表达式,其结果为True或False,决
定循环是否应当继续执行。条件表达式紧跟在 while关键字之后,并通过冒号(:)分隔。
缩进的语句块则被称为循环体,它在每次循环的继续条件结果为True时被重复执行。循

环体的一次完整执行被称为一次迭代。

while循环的执行流程如图5.2所示。它首先检测继续条件的结果值,若结果值为

图5.2 while循环的执行流程

True,则执行循环体语句,每次循环迭代完成后,Python会重

新检测继续条件的结果值,并决定是否继续执行循环体语句。
只要条件表达式的结果为True,循环体语句就会重复执行,
直到继续条件的结果值为False时,不再执行循环体语句,循
环结束,转到while循环语句的后继语句。

这里强调Python中一个至关重要的语法特性,循环体内

的语句块通过明确的缩进机制来界定其作用域。Python解

释器在执行过程中,会严格依据语句块的缩进级别来识别并

解析循环的开始与终止点。因此,必须确保循环体内每一条

语句都遵循了正确的缩进规则,否则可能会导致逻辑错误、代
码难以阅读,甚至引发运行时异常,从而严重影响程序的稳定

性和性能。

阅读下列代码一和代码二,分析程序实现的功能,写出程序运行的结果。

 #代码一

x = 0

while x < 4:

 x = x + 1

print("x is", x)

#代码二

x = 0

while x < 4:

 x = x + 1

 print("x is", x)

代码一和代码二的流程图如图5.3(a)和(b)所示。代码一和代码二的循环的继续条件

第 5章　循环结构 89

都为x<4,代码一中的循环体只有语句x=x+1,而代码二中的循环体有两条语句:x
=x+1和print("xis",x)。

图5.3 代码一和代码二的流程图

代码一中,当while循环继续条件为True时,执行循环体语句x=x+1,共执行4轮。
在执行第4轮后,x=4,然后重新检测继续条件x<4的结果为False,循环结束,不再执行循

环体语句。接着执行while循环后的语句print("xis",x),运行结果为:xis4。
代码二中,当while循环继续条件为True时,执行循环体语句块,每一轮按顺序执行两

条语句,都会执行print("xis",x)进行输出,共执行4轮,因此输出4次。在执行第4轮后,

x=4,然后重新检测继续条件x<4的结果为False,循环结束,不再执行循环体语句。接着

执行while循环后的语句,无语句可执行,程序执行结束。表5.1展示了代码二的循环执行

过程。

表5.1 代码二的循环执行过程

循环轮数 进入本轮循环时x的值 继续条件 执行本轮循环后x的值 输出

1 0 True 1 xis1

2 1 True 2 xis2

3 2 True 3 xis3

4 3 True 4 xis4

5 4 False 不执行循环体语句 程序结束,无输出

5.2.2 使用 while 生成 5 个算式

【微实例5-1】 实现自动生成5个减法算式,每个算式由[1,100]范围的随机整数组成,
并确保被减数不小于减数,提示用户逐一回答每个算式,并在提交答案后给出用户回答是否

90 Python 程序设计与数据分析（微课版）

正确的反馈。
【问题分析】
假如count表示生成的算式个数,count初始值为0,则当布尔表达式count<5为True

时,就重复执行生成一个减法算式的语句块。使用while循环实现生成5个减法算式的代

码(5-1.py)如下。

 import random

count = 0 #表示生成的算式个数,初始值为 0

NUMBER_OF_QUESTIONS = 5 #常量,表示生成算式的个数

#使用 while 循环生成多个减法算式

while count < NUMBER_OF_QUESTIONS:

 #生成两个 100以内的随机整数

 num1 = random.randint(1, 100)

 num2 = random.randint(1, 100)

 #如果 num1<num2,互换二者的值

 if num1 < num2:

 num1, num2 = num2, num1

 #提示用户回答 num1-num2=?并保存答案

 answer = eval(input(f"{num1} - {num2} =?"))

 #验证用户输入的答案是否正确,然后显示回答是否正确

 if num1 - num2 == answer:

 print("回答正确!")

 else:

 print(f"回答错误。\n{num1}-{num2}={num1 - num2}")

 count += 1 #count 值增加 1,表示生成算式个数加 1

运行程序,可能的一次运行结果如下,问号(?)后面的数值为用户输入的答案。

 64 - 23=? 5

回答错误。
64-23=41

94 - 38=? 58

回答错误。
94-38=56

79 - 13=? 66

回答正确!

98 - 79=? 19

回答正确!

46 - 18=? 24

回答错误。
46-18=28

5.3 循环设计策略

5.3.1 猜数字

 【微实例5-2】 随机生成0~100(包含0和100)的整数,猜猜计算机里存储的数字是什

第 5章　循环结构 91

么。提示用户输入一个数字,直到该数字与随机生成的数字相匹配。对于输入的数字,如果

猜中,输出“恭喜,猜中啦!”;如果未猜中,提示用户猜的数字是否太低或太高。
【问题分析】
随机生成的数字范围为[0,100]。为了尽快猜中计算机里存储的数字,可以采用二分折

半的方法来猜。首先猜0~100的中间整数值为50,如果提示太高了,那么可以得出随机生

成的数字范围为[0,49]。如果提示太低了,则推断出随机生成的数字范围为[51,100]。按

类似的规则在缩小的范围里继续猜,直到猜到为止。如何编写程序实现此问题的求解呢?
下面首先分析猜一次的过程。

(1)输入:随机生成0~100(包含0和100)的整数;提示用户连续输入一个数字。
(2)处理和输出:比较用户输入的数字和随机生成的数字,若用户输入的数字等于随

机生成的数字,输出“恭喜,猜中啦!”;若用户输入的数字小于随机生成的数字,输出“猜得太

高啦!”;若用户输入的数字大于随机生成的数字,输出“猜得太低啦!”。
猜一次的实现代码如下:

 1 import random

2

3 number = random.randint(0, 100) #生成一个 0~100的随机整数

4 #使用 input()函数提示用户输入一个猜测的数字,并使用 eval()函数将输入转换为整数

5 guess = eval(input("请在 0~100猜数字!输入猜的整数: ")) #提示输入数字

6 if guess == number: #如果猜测的数字等于随机数

7 print("恭喜,猜中啦!") #输出恭喜信息

8 elif guess > number: #如果猜测的数字大于随机数

9 print("猜得太高啦!") #提示用户猜得太高

10 else: #如果猜测的数字小于随机数

11 print("猜得太低啦!") #提示用户猜得太低

运行上面的程序,提示一次用户输入猜的数字,如果猜中,输出“恭喜,猜中啦!”,如果用

户未猜中,即guess!=number时,还想让用户继续猜的话,就需要重复执行第5~11行的

代码。把这段代码用while循环包裹起来,并把guess!=number作为循环的条件表达式,
其值为True时,表示还需要猜数字,其值为False时,表示猜中,循环结束。需要注意,把第

3行放到while循环后,guess需要赋一个初始值且满足第一次执行循环条件判断为True
(即guess初始值不为0~100),保证while循环至少执行一次,也就是猜一次就猜中的情

况。完整的实现代码(5-2.py)如下。

 import random

number = random.randint(0, 100) #生成一个 0~100的随机整数

guess = -1 #初始化 guess 为-1,确保进入循环

#使用 while 循环让用户猜测数字,直到猜中为止

while guess != number:

 guess = eval(input("请在 0~100猜数字!输入猜的整数: "))#提示输入数字

 if guess == number: #如果猜测的数字等于随机数

 print("恭喜,猜中啦!") #输出恭喜信息

 elif guess > number: #如果猜测的数字大于随机数

92 Python 程序设计与数据分析（微课版）

 print("你猜得太高了") #提示用户猜得太高

 else: #如果猜测的数字小于随机数

 print("你猜得太低了") #提示用户猜得太低

运行程序,可能的一次输出结果如下:

 请在 0~100猜数字!输入猜的整数: 50

你猜得太低了

请在 0~100猜数字!输入猜的整数: 75

你猜得太低了

请在 0~100猜数字!输入猜的整数: 90

你猜得太高了

请在 0~100猜数字!输入猜的整数: 85

你猜得太低了

请在 0~100猜数字!输入猜的整数: 86

恭喜,猜中啦!

5.3.2 循环设计策略概述

根据微实例5-2的分析实现过程,可以将循环设计策略总结为以下三步。

1.确认需要重复执行的操作

明确任务中哪些操作是需要重复进行的,即循环的语句。这些操作构成循环的“主体”
或“循环体”。

2.把循环语句包裹在一个循环里

选用合适的循环结构(如while循环或for循环)来包裹这些操作。选择哪种循环取决

于具体需求。如果不知道循环需要执行多少次,或者循环的执行次数取决于某些条件,选
while循环更合适;如果知道循环需要执行的确切次数,那么for循环可能是更好的选择。

以while循环为例,包裹在while循环里的语句格式如下:

 while True:

 循环语句

3.编写循环中的继续条件并添加控制循环结束的逻辑

(1)设置初始条件:在while循环之前,设置任何必要的变量或条件,这些变量或条件

将在循环体内被修改,以决定循环何时结束。
(2)循环体中的逻辑:在循环体内,编写需要重复执行的代码,并可能包括修改用于控

制循环条件的变量。
(3)跳出循环的条件:在循环体内,可以使用break语句来明确地跳出循环,或者使用

条件表达式来控制while循环的条件,使其最终变为False,从而自然结束循环。
以while循环为例设计策略的语法格式顺序如下:

 设置初始条件语句 #第三步

while 条件表达式: #第二步

第 5章　循环结构 93

 循环语句 #第一步

 其他用于控制循环的语句 #第三步

5.3.3 生成多个减法算式

【微实例5-3】 在微实例5-1的问题描述中,实现生成多个减法算式,生成算式个数由

用户来决定,用户回答完所有的问题后,输出正确答案的个数,同时显示完成所有算式所用

的时间。
【问题分析】
按照5.3.2节循环设计策略概述进行分析,该程序设计分为以下三步。
第一步:确定需要被循环的语句。
要生成多个减法算式,首先生成一个减法算式,然后重复生成一个减法算式的语句若干

次,重复次数由用户输入的次数决定。生成一个减法算式的过程如下:首先获取两个随机

数,判断第一个数是否小于第二个数,若是,则交换两个数,并提示用户做减法。然后比较用

户输入的结果是否与正确计算结果一致,给此题打分。
第二步:将完成一个减法算式和打分的语句包裹在while循环里。
第三步:编写while循环中的继续条件,实现5个减法算式的生成和打分。
在编写程序时,需要考虑初始值的设定、循环控制变量的添加以及循环继续条件的设

定。程序开始时,应将正确回答数correctCount初始化为0,并在每次循环中根据答题情况

更新此值:答对一题则加一,答错则保持不变。答完所有题目后,correctCount即为总答对

题数。同时,添加循环控制变量count并初始化为0,每次循环后自增1。当count小于设定

的题目数量时,程序继续;达到或超过题目数量时,循环结束。这样即可控制循环次数,实现

程序控制。同时添加记录用户开始答题的时间变量startTime和答题结束时的时间变量

endTime,用于计算完成所有算式所用的时间来评估用户的答题速度。完整的实现代码(5-
3-1.py)如下。

 import random

import time

numberOfQuestions = int(input("请输入生成算式的个数:")) #输入生成算式的个数

count = 0 #算式个数计时器,表示生成的算式个数,初始值为 0

correctCount = 0 #正确计数器,表示答对的个数,初始值为 0

startTime = time.time() #开始做题的时间

while count < numberOfQuestions:

 #1.生成两个随机数

 num1 = random.randint(1, 100)

 num2 = random.randint(1, 100)

 #2. 确保 num1大于 num2

 if num1 < num2:

 num1, num2 = num2, num1

 #3. 提示用户回答 num1-num2=?并保存答案

 answer = eval(input(f"{num1}-{num2}=?"))

 #4. 验证用户输入的答案是否正确,然后显示回答是否正确,答对时正确计数器加 1

94 Python 程序设计与数据分析（微课版）

 if num1 - num2 == answer:

 print("回答正确!")

 correctCount += 1

 else:

 print(f"回答错误。\n{num1}-{num2}={num1 - num2}")

 #5. 算式个数计时器加 1

 count += 1

endTime = time.time() #答题结束的时间

testTime = int(endTime - startTime) #获得答题用时

print(f"{numberOfQuestions}题答对了{correctCount}个题目。用时{testTime}秒。")

运行程序,输入2后回车,可能的一次输出结果如下。

 请输入生成算式的个数:2

23-16=? 7

回答正确!

35-16=? 19

回答正确!

2题答对了 2个题目。用时 12秒。

5.3.4 根据用户确认控制循环

如果想让用户来决定是否还要继续循环,如何实现? 可以创建一个记录用户意愿的变

量,通过用户输入值来控制循环的继续或结束。当用户输入Y时,继续循环,输入N时结束

循环,实现代码框架如下。

 continueLoop = 'Y' #初始化循环控制变量为 'Y',表示可以开始循环

while continueLoop == 'Y': #当 continueLoop 等于 'Y' 时,继续循环

 ... #这里编写循环体内部需要执行的代码

 #获取用户输入,根据用户的选择决定是否继续循环

 continueLoop = input("输入'Y'继续循环,输入'N'退出循环: ")

例如,在微实例5-3中,由用户来决定是否继续答题,当用户输入Y时表示想答题,输入

N时表示不想答题,实现代码(5-3-2.py)如下。

 import random

import time

continueLoop = input("请输入是否想答题,输入 Y 表示想答题,输入 N 表示不想答题:")

count = 0 #算式个数计时器,表示生成的算式个数,初始值为 0

correctCount = 0 #正确计数器,表示答对的个数,初始值为 0

startTime = time.time() #开始做题的时间

while continueLoop =='Y':

 #1.生成两个随机数

 num1 = random.randint(1, 100)

 num2 = random.randint(1, 100)

第 5章　循环结构 95

 #2. 确保 num1大于 num2

 if num1 < num2:

 num1, num2 = num2, num1

 #3. 提示用户回答 num1-num2=?并保存答案

 answer = eval(input(f"{num1}-{num2}=?"))

 #4. 验证用户输入的答案是否正确,然后显示回答是否正确,答对时正确计数器加 1

 if num1 - num2 == answer:

 print("回答正确!")

 correctCount += 1

 else:

 print(f"回答错误。\n{num1}-{num2}={num1 - num2}")

 #5. 算式个数计时器加 1

 count += 1

 #输入是否答题

 continueLoop = input("是否想继续答题,输入 Y 继续答题,输入 N 不想答题:")

endTime = time.time() #答题结束的时间

testTime = int(endTime - startTime) #获得答题用时

print(f"{count}题答对了{correctCount}个题目。用时{testTime}秒。")

运行程序,可能的一次输出结果如下。

 是否想继续答题,输入 Y 继续答题,输入 N 不想答题:Y

99-83=? 16

回答正确!

是否想继续答题,输入 Y 继续答题,输入 N 不想答题:Y

67-54=? 13

回答正确!

是否想继续答题,输入 Y 继续答题,输入 N 不想答题:N

2题答对了 2个题目。用时 26秒。

5.3.5 使用哨兵值控制循环

若循环执行的次数不是预先确定的,可指定一个特殊的输入值来表示循环结束,这个特

殊值称为哨兵值。使用哨兵值来控制循环的方式称作步哨式控制,就像哨兵在岗位上根据

特定信号来控制通行一样。
【微实例5-4】 实现一个猜数字游戏,计算机生成一个随机数,玩家通过输入数字来猜

测,可以随时输入Bye选择退出游戏。
【问题分析】
使用一个名为user_input的变量来存储输入值。使用一个名为answer的变量来存储

产生的随机值。只要用户输入的值不为Bye(称Bye为哨兵值),就让用户重复猜数字的游

戏。使用while循环的实现代码(5-4.py)如下。

 1 import random

2 answer = random.randint(1, 100) #生成一个 1~100的随机数作为答案

96 Python 程序设计与数据分析（微课版）

 3 #提示用户游戏规则和如何退出游戏
4 print("欢迎来到猜数字游戏!我已经生成了一个 1~100的随机数。")
5 print("你可以输入一个数字来猜测答案。输入 'Bye' 来退出游戏。")
6 user_input = input("请输入你的猜测: ") #获取用户的首次输入
7 #开始游戏循环,直到用户输入 'Bye' 退出
8 while user_input.lower() != 'bye':

9 guess = int(user_input) #尝试将用户输入转换为整数进行猜测
10 if guess == answer: #如果猜测的数字与答案相同
11 print("恭喜,你猜对了!再猜一轮!") #恭喜猜对,并告知开始新一轮游戏
12 answer = random.randint(1, 100) #生成一个新的随机数作为答案
13 elif guess < answer: #如果猜测的数字小于答案
14 print("猜的数字太小了,请再试一次。") #提示用户数字太小
15 else: #如果猜测的数字大于答案
16 print("猜的数字太大了,请再试一次。") #提示用户数字太大
17 user_input = input("请输入你的猜测,退出输入'Bye': ") #再次获取用户输入

程序第2行生成一个1~100的随机数作为答案,然后玩家通过输入数字来猜测答案。
玩家可以随时选择退出游戏,输入Bye即可退出。程序会根据玩家的猜测提供反馈,在玩

家猜对答案时又重新生成一个随机数字(第12行),开始下一轮的猜数字游戏。程序运行一

次的结果如下:

 欢迎来到猜数字游戏!我已经生成了一个 1~100的随机数。
你可以输入一个数字来猜测答案。输入 'Bye' 来退出游戏。
请输入你的猜测: 50

猜的数字太大了,请再试一次。
请输入你的猜测,退出输入'Bye': 25

猜的数字太大了,请再试一次。
请输入你的猜测,退出输入'Bye': 12

猜的数字太大了,请再试一次。
请输入你的猜测,退出输入'Bye': 6

猜的数字太大了,请再试一次。
请输入你的猜测,退出输入'Bye': 3

猜的数字太大了,请再试一次。
请输入你的猜测,退出输入'Bye': 2

恭喜,你猜对了!再猜一轮!

5.4 for循环

5.4.1 for 循环的基本语法

 通常情况下,当循环的执行次数是已知的时,可以使用一个控制变量来统计执行次数。这

类循环被称为计数控制循环,而for循环就是一种典型的计数控制循环。其基本格式如下:

 for 临时变量 in 可迭代对象:

 循环体

在for语句中,in后面的可迭代对象可以为一个列表、一个字符串等。当循环执行时,

