
CHAPTER

1Properties of gases

Viscosity and other fluid properties are the material preconditions for fluid lubri-

cation. Because of the compressibility and the strong coupling between density

and temperature and pressure, lubrication gases show different viscosity�pressure

and viscosity�temperature relationships compared to liquids. In addition, water

held in gas often leads to a condensing problem in high-pressure gas seals, which

also makes characteristics of gas lubrication different from those of liquid lubrica-

tion. Essentially, it depends on the physical properties of the gas.

This chapter introduces a basic knowledge of gases related to lubrication cal-

culation, including equations of the gas state; the relationship between viscosity,

and pressure and temperature; and the relationship between humidity and pressure

and temperature.

1.1 Gas equations
In gas lubrication, the flow of gas is also the process of changing the state of gas.

Generally, the gas lubrication Reynolds equation describes the macroscopic

motion of the gas under external forces such as velocity shear and extrusion, and

the energy equation presents the relationship between gas and external heat

exchange and the transformation of macroscopic mechanical energy and gas. The

description of the state of the gas microthermal motion is described by the three

parameters of pressure p, density ρ, and temperature T. For an ideal gas, the rela-

tionship between pressure, density, and temperature satisfies the ideal gas state

equation,

p

ρ
5RuT (1.1)

where the ideal gas constant Ru5 8.314472 m3 Pa/(mol K).

For a general thermal process when the pressure, density, and temperature

change at the same time, a single use of the ideal gas state equation cannot give

change values of the pressure, seal, and temperature because there are three vari-

ables in the equation. So, we need to build another gas equation.

The Brownian motion, discovered in 1827 by British botanist Gordn Brown, is

a state of movement of microscopic particles in gases or liquids, and was discov-

ered in 1827 by British botanist Gordon Brown. In 1907, Einstein proposed the
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energy equipartition principle. This basic theory of statistical mechanics holds

that the kinetic energy of a microscopic particle depends only on its temperature,

regardless of its size or mass. However, it had been unable to directly prove the

equipartition theorem for Brownian particles because the high-speed collision

between the particles in Brownian motion led to constant direction and speed

change, making the instantaneous velocity of a particle in Brownian motion diffi-

cult to measure. In 2010, Li et al.’s experimental work [1] proved that the energy

equipartition principle is correct for air. This provides a new way to discuss gas

thermal effect in gas lubrication.

We discussed and analyzed the characterization of gas pressure and tempera-

ture based on the energy equipartition principle, and established the independent

equation of pressure and temperature for an ideal gas, which makes it possible to

calculate the gas temperature field for any thermal process [2]. The gas equations

based on the energy equipartition principle are introduced in this section.

1.1.1 Ideal gas equations

Generally, ideal gas molecule movement can be dealt with using the rigid sphere

model. Fig. 1.1 illustrates freedom of an ideal gas molecular motion. As shown in

Fig. 1.1, an ideal gas molecular motion includes translation and rotation motions

in the x, y, and z directions. When temperature is high, there are additional vibra-

tion motions for gas molecular movement. Motion in each of these directions is

counted as one degree of freedom. According to the energy equipartition princi-

ple, the energy per degree of freedom for these kinds of motions is equal to Em.

So, gas molecular energy can be expressed as follows:

Esum 5 idEe (1.2)

where id is the degree of gas molecular freedom.

Now, we assume that gas temperature only tokens macroscopically inner

energy of the gas molecular, so the following equation can be given:

T5 cTidEe (1.3)

FIGURE 1.1

Degree of gas molecular freedom.
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where T is the absolute temperature and cT is the temperature coefficient. c21
T

means the increase of gas molecular energy per unit temperature increment, that

is, the reciprocal of specific heat at constant volume. So the following equation

can be given:

cT 5
1

cv
(1.4)

where cv is specific heat at constant volume.

Furthermore, it is assumed that gas pressure is determined only by both trans-

lation energy of gas molecular energy and gas density. Hence,

p5 cpρidEe (1.5)

where cp is the pressure coefficient.

From Eqs. (1.3) and (1.5), the ideal gas state equation can be obtained as

follows:

p

Tρ
5

cp

cT
(1.6)

So, it can be obtained by comparing it with Eq. (1.1):

cp 5 cTRu (1.7)

That is,

cp 5
Ru

cv
(1.8)

It should be noted that Eqs. (1.3) and (1.5) are two independent equations that

agree well with the traditional ideal gas state equation and characterize the rela-

tionship between gas pressure and temperature, and gas kinetic energy, respec-

tively. Relative to the ideal gas equation (1.1), a gas equation has been added to

realize the sealing of multivariable gas lubrication equations. In this way, the

pressure, temperature, and density of gases in general thermal processes can be

quantitatively analyzed.

1.1.2 Gas index equation

The gas index equation is often used to characterize and describe the thermal pro-

cess of gases. Here, the index equation is derived from the energy equipartition

principle, to illustrate the proposed temperature equation and pressure equation.

Let us consider 1 mol gas with the initial state of T0, p0, ρ0 in the adiabatic

compression process, as shown in Fig. 1.2. Assuming the sectional area is 1, the

work done by the external force on the gas can be expressed as

Δw52 pdx

52 pd
1

ρ

0
@

1
A (1.9)
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According to Eq. (1.2), increase of the gas internal energy is obtained as

follows:

Δw0 5 iddEe (1.10)

Substituting Eq. (1.5) into the above equation gives

Δw0 5
1

cp
d

p

ρ

� �
(1.11)

For the adiabatic compression process, there is

Δw5Δw0 (1.12)

Hence,

2pd
1

ρ

� �
5

1

cp
d

p

ρ

� �
(1.13)

Integrating Eq. (1.13) gives the following expression:

2ðln ρ21 2 ln ρ21
0 Þ5 1

cp
ðlnðpρ21Þ2 lnðp0ρ21

0 ÞÞ (1.14)

Furthermore, the following expression for the well-known gas index equation

can be obtained from Eq. (1.14).

pρ2γ 5 p0ρ
2γ
0 (1.15)

where γ5 11 cp 5 11Ru=cv
Obviously, Eq. (1.15) indicates that the gas state presents exponential change

during the adiabatic compression. For air, the specific heat at constant volume

equals cv 5 2:5Ru, so we get γ5 1:4. For the general gas thermal process, the

changes of gas pressure, density, and temperature are subject to Eqs. (1.3) and

dx

FIGURE 1.2

Illustration of gas adiabatic compression process.
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(1.5). Based on the initial sate (T0,p0,ρ0) and the final state (T1,p1,ρ1), the index γ
can be calculated by the following expression:

γ5
ln p1=p0
� �

ln ρ1=ρ0
� � (1.16)

It should be noted that the gas index equation is not suitable for analysis of

the gas thermal hydrodynamic lubrication problem, as the process index of the

general thermal process is obtained mainly through experimental measurement.

1.1.3 Actual gas equation

For an actual gas, the relationship between pressure, density, and temperature

satisfies the actual gas state equation:

p

ρ
5 εRuT (1.17)

where ε is gas compressibility. The gas compressibility is mainly characterized

by the compressibility of the gas, so the pressure equation for actual gas is

obtained as follows by revising Eq. (1.5).

p5 εcpρidEe (1.18)

Table 1.1 shows the gas compressibility of nitrogen under different tempera-

tures and pressures. It can be seen that in a standard room temperature under

10 MPa pressure, the variation of the gas compressibility is less than 1%.

Therefore the ideal gas hypothesis is reasonable in general gas lubrication

analysis.

1.1.4 Degree of gas molecular freedom

A gas molecule at room temperature can be considered as a rigid body without

considering the freedom of vibration. For a nonrigid molecule, there is also a

spring-like vibration, so we add 1 to the degree of freedom.

Monatomic molecules, such as helium, neon, and argon, have only one atom,

which can be seen as a free particle, so there are three translational degrees of

freedom.

In rigid diatomic molecules, such as hydrogen, oxygen, and carbon monoxide,

the distance between the two atoms remains the same, and to determine the loca-

tion of the center of mass, three independent coordinates are required. To deter-

mine the location of the point line, two independent coordinates are needed. It

makes no sense to rotate the two points around the wire. Therefore the rigid

diatomic molecule has five degrees of freedom: three translational degrees of

freedom and two rotational degrees of freedom.

51.1 Gas equations
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For rigid triatoms or polyatomic molecules, such as water, carbon dioxide, and

ammonia, as long as the atoms are not aligned in a straight line, they can be seen

as free rigid bodies with six degrees of freedom.

The degree of gas molecular freedom is shown in Table 1.2.

1.1.5 Specific heat capacity

For 1 mol of gas, when the volume remains constant, in the absence of chemical

reaction and phase change, the heat absorbed or released by 1 K temperature

change is called the constant volume molar heat capacity of the gas.

Table 1.3 shows the composition of standard dry air and its constant volume

specific heat capacity.

1.2 Viscosity
In the theory of fluid lubrication, dynamic viscosity is used to characterize the

movement resistance of a fluid, which is decisive for the load capacity of

Table 1.2 Degree of gas molecular freedom.

Molecular type

Degree of freedom

Translation
it

Rotation
ir

Vibration
is id5 it1 ir1 is

Monatomic molecule 3 0 0 3

Diatomic molecule Rigid 3 2 0 5
Nonrigid 3 2 1 6

Polyatomic
molecule

Rigid 3 3 0 6
Nonrigid 3 3 3n2 6 3n

Table 1.3 Composition of standard dry air.

Composition

Relative
molecular
mass

Mole
fraction

Freedom
number of gas
motions

Constant volume
specific heat capacity
J/(g K)

O2 32.000 0.2095 5 0.649
N2 28.016 0.7809 5 0.741
Ar 39.944 0.0093 3 2

CO2 44.010 0.0003 6 2

H2 2 2 2 9.934
H2O 2 2 2 1.381

71.2 Viscosity



hydrodynamic lubrication film. Because of the compressibility, the viscosity of

gases show different characteristics compared with those of liquids, which are

obviously affected by temperature and pressure.

Table 1.4 shows the air dynamic viscosity values of one standard atmospheric

pressure under the fluctuation range of room temperature. As can been from the

table, dynamic viscosity increases with increase in temperature. The dynamic vis-

cosity increases about 9% when the temperature increases 30�C under the condi-

tion of one standard atmospheric pressure.

The viscosity of gas is affected not only by temperature but also by pressure.

Both temperature and pressure have a significant influence on the dynamic vis-

cosity of a gas. For air, a temperature increase of 150�C may make dynamic vis-

cosity increase of about 40%. In addition, dynamic viscosity may increase about

55% when pressure increases from 0.1 to 30 MPa at a temperature of 30�C [3].

However, as temperature increases, the dynamic viscosity of water vapor is oppo-

site to that of air; that is, the dynamic viscosity of temperature decreases rapidly

with an increase in temperature.

Although a chart can give an accurate value of dynamic viscosity, the mathe-

matical expression of gas dynamic viscosity is necessary for conveniently calcu-

lating fluid lubrication.

Table 1.4 Dynamic viscosity of the air under different temperatures.

Temperature
Dynamic
viscosity Temperature

Dynamic
viscosity Temperature

Dynamic
viscosity

T (�C) η (3 1026 Pa s) T (�C) η (3 1026 Pa s) T (�C) η (31026 Pa s)

5 17.340 15 17.840 25 18.340

5.5 17.365 15.5 17.865 25.5 18.365

6 17.390 16 17.890 26 18.390

6.5 17.415 16.5 17.915 26.5 18.420

7 17.440 17 17.940 27 18.450

7.5 17.465 17.5 17.965 27.5 18.470

8 17.490 18 17.990 28 18.490

8.5 17.515 18.5 18.015 28.5 18.515

9 17.540 19 18.040 29 18.540

9.5 17.565 19.5 18.065 29.5 18.565

10 17.590 20 18.090 30 18.590

10.5 17.615 20.5 18.115 30.5 18.615

11 17.640 21 18.140 31 18.640

11.5 17.665 21.5 18.165 31.5 18.665

12 17.690 22 18.190 32 18.690

12.5 17.715 22.5 18.215 32.5 18.715

13 17.740 23 18.240 33 18.740

13.5 17.765 23.5 18.265 33.5 18.765

14 17.790 24 18.290 34 18.790

14.5 17.815 24.5 18.318 34.5 18.815
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The main calculation formulas of gas dynamic viscosity are discussed next.

1. Satland formula

The formula was established for situations in which the temperature is

below 2000 K, which is expressed as follows:

η
η0

5
T=T0
� �3=2

T0 1Bð Þ
T1B

(1.19)

where B is the constant associated with the gas, B5 110.4 K for air, and η0 is
viscosity at temperature T0.

2. Exponential formula

η
η0

5
T

T0

� �n

(1.20)

where the value of exponential n varies with type and temperature of gas. In

the range of 90 K, T, 300 K, n5 8=ρ is desirable.

3. The Champman�Enskog formula

From the Champman�Enskog equation [4], a relationship between

viscosity and temperature of a gas can be obtained as follows:

η5
5

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πmgaskBT

p
πd2gas

(1.21)

where kB is the Boltzmann constant, mgas is the mean molar mass, and dgas is

the molecular diameter.

4. Lucas formula

In general, the temperature and pressure of air are measured by the critical

temperature Tc and the critical pressure pc to replace the absolute value of air

based on the principle of the contrast state.

The contrast temperature of air is defined as follows:

Tr 5
T

Tc
(1.22)

The contrast pressure of air is defined as follows:

pr 5
p

pc
(1.23)

In 1980, Lucas [5] proposed a method of gas viscosity calculation, which is

expressed as follows:

ηscξ5 0:807T0:618
r 2 0:357 exp 20:449Trð Þ1 0:340exp 24:058Trð Þ1 0:018 (1.24)

ξ5 37; 916
Tc

M3p4c

� �1=6

(1.25)
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where ηsc is the viscosity of dry air under the standard condition (15�C,
101,325 Pa), for which the unit is cP. ξ is the correlation coefficient of viscosity,

for which the unit is cP21.

If 1, Tr, 40, 0, pr# 100, then there is

η
ηsc

5 11
A1p

1:3088
r

A2p
A5
r 1 11A3p

A4
r

� �21
(1.26)

where

A1 5
1:2453 1023
� �

exp 5:1726T20:3286
r

� �
Tr

(1.27a)

A2 5A1 1:6553Tr 2 1:2723ð Þ (1.27b)

A3 5
0:4489 exp 3:0578T237:7332

r

� �
Tr

(1.27c)

A4 5
1:7368 exp 2:2310T27:6351

r

� �
Tr

(1.27d)

A5 5 0:9425 exp 20:1853T0:4489
r

� �
(1.27e)

where η is the gas viscosity to be solved, for which the unit is cP.

If Tr# 1.0, Pr, (Pvp/Pc), then there is

ηξ5 0:6001 0:760PB1

r 1 6:990PB2

r 2 0:6
� �

12 Trð Þ (1.28)

where

B1 5 3:2621 14:98P5:508
r (1.29a)

B2 5 1:3901 5:746Pr (1.29b)

The viscosity of gas in gas seals was analyzed by Thomas et al. [6], and the

results showed that the viscosity of the ideal gas was significantly different from

that of the actual gas. As shown in Fig. 1.3, in a large range of pressure and tem-

perature variation, the Lucas formula is consistent with the measured gas

viscosity.

It should be noted that the influence of pressure is not considered in the

Satland formula, the Exponential formula, or the Champman�Enskog formula,

which does not lead to an obvious deviation analysis in the design of ordinary gas

bearing lubrication. However, for high-pressure gas seals where the gas pressure

may reach up to 50 MPa, the influence of pressure on viscosity cannot be ignored

in analysis of lubrication.

If the gas phase mixture is chosen as the lubricating medium, the calculation

formula of the critical property parameters of the mixture is as follows [5].

Critical temperature of the mixture, Tc, is expressed as

Tc 5
XN
i51

yiTci (1.30)
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