第5章

光是人类生存不可或缺的,是人类 认识外部世界的媒介。在自然界中 人们看到的光来自于太阳或借助产 生光的设备,如荧光灯、聚光灯、 白炽灯等。在 Cinema 4D 中,灯 光是表现三维效果非常重要的一部 分,能够表达出作品的灵魂。没有 光,任何漂亮的材质都无法展示出 它应有的效果。

5.1 三维照明的概念

为一个三维模型添加适当的光照效果,能够产生反射、阴影等效果, 从而使显示效果更加生动。在三维软件中,光的功能其实就是对这个真实 世界的光和影进行模拟。Cinema 4D 包含了很多用于光影制作的工具,对 它们进行组合使用,可以制作出各种各样的光影效果,如图 5-1 所示。

图 5-1

5.2 灯光类型

Cinema 4D 提供的灯光种类较多,按照类型可以分为"泛光灯""聚 光灯""远光灯"和"区域光"这4种。其中,"聚光灯"和"远光灯" 又分别包含了不同的类型。此外,Cinema 4D 还提供了"默认灯光"和"日 光"等类型。

在 Cinema 4D 可以通过以下两种方法来调用灯光。

★ 选择"创建"|"灯光"子菜单中的命令,如图 5-2 所示。

★ 在工具栏中单击 ☑ 按钮,在工具组中选择所需的灯光,如图 5-3 所示。

图 5-3

5.2.1 默认灯光

新建一个 Cinema 4D 文件时, 系统会有一个默认的 灯来帮助照亮整个场景, 以便在建模和进行其他操作时 能够看清物体。一旦新建了一个灯光对象, 这盏默认灯 光的作用就消失了, 场景将采用新建的灯光作为光源。 默认的灯光是和默认摄像机绑定在一起的, 当用户渲染 视图改变视角时, 默认灯光的照射角度也会随之改变。 新建一个球体, 为了方便观察, 可为球体赋予一个有颜 色且高光较强的材质, 改变摄像机的视角就可以发现高 光的位置在跟着发生变化, 如图 5-4 所示。

图 5-4

默认灯光的照射角度可以通过"默认灯光"对话框 来单独改变,在视图窗口的"选项"菜单中选择"默认灯光" 选项,如图 5-5 所示,即可打开"默认灯光"对话框。 按住鼠标左键在"默认灯光"窗口中拖动,可改变灯光的照射角度,如图 5-6 所示。

选项	过滤面板	
	细节级制	••••••
6 0 0	立体	
${\bf L}$	线性工作流程着色	
	増强 OpenGL	
2	噪波	
for	后期效果	
0	投影	
	透明	
\mathbf{r}	反射	
	背面忽略	N~P
9	等参线编辑	Alt+A
•	显示标签	N~O
	纹理	N~Q
•	透显	N~R
Ó.	默认灯光	
7	配置视图	Shift+V
H	配置全部	Alt+V

图 5-5

图 5-6

.2.2 泛光灯

泛光灯是最常见的灯光类型,光线从单一的点向四 周发射,它类似现实生活中的灯泡。在工具栏中单击"灯 光"按钮 ②即可创建一个泛光灯对象,如图 5-7 所示, 其中的白点便为泛光灯。

图 5-7

图 5-7(续)

提示

移动泛光灯的位置可以发现,泛光灯离对象越远, 它照亮的范围就越大,如图 5-8 所示。

近

远 图 5-8

5.2.3 聚光灯

聚光灯的光线会向一个方向呈锥形传播,也称为光 束的发散角度。聚光灯其实类似现实生活中的手电筒, 还有舞台上的追光灯,常用来突出显示某些重要的对象。 创建聚光灯后,可以看到灯光对象呈圆锥形显示,如图 5-9 所示。

选择聚光灯,可以看到在圆锥的底面上有5个黄点, 其中位于圆心的黄点用于调节聚光灯的光束长度,而位 于圆周上的黄点则用来调整整个聚光灯的光照范围,如 图 5-10 所示。

图 5-10

默认创建的聚光灯位于世界坐标轴的原点,并且光 线由原点向 Z 轴的正方向发射。如果想要灯光照射在对 象上,需要配合各个视图对聚光灯进行移动、旋转等操作, 并放置在理想的位置上。默认创建的目标聚光灯自动照 射在世界坐标轴的原点,也就是说,目标聚光灯的目标 为世界坐标轴的原点。这样默认创建的对象将会刚好被 目标聚光灯照射。

5.2.4 目标聚光灯

目标聚光灯与聚光灯最大的区别在于,它在"对象" 窗口中多出来的"目标表达式"标签 2 和"灯光.目标.1" 对象,如图 5-11 所示。通过"目标表达式"标签和"灯光.目标.1"对象,可以随意更改目标聚光灯所照射的目标对象, 所以调节起来更加方便、快捷。如图 5-12 所示为通过移动目标点来更改聚光灯的照射目标。

图 5-11

图 5-12

选择聚光灯右侧的"目标表达式"标签,将目标对 象拖曳到目标表达式"属性"窗口中"目标对象"一栏 右侧的空白区域,则聚光灯的照射目标改为该目标对象, 如图 5-13 所示。

图 5-13

图 5-13(续)

5.2.5 区域光

区域光是指光线沿着一个区域向周围各个方向发射 光线,从而形成一个有规则的照射平面。区域光属于高 级的光源类型,常用来模拟室内来自窗外的天空光。它 的面光源十分柔和、均匀,最常用的例子就是产品摄影 中的反光板,如图 5-14 所示。默认创建的区域光在模型 视图中也显示为矩形区域,如图 5-15 所示。

图 5-14

图 5-15

可以通过调节矩形框上的黄点来改变区域的大小,

如图 5-16 所示。此外,区域光的形状也可以通过"属性" 面板中"细节"选项卡的"形状"参数来调整。

图 5-16

5.2.6 IES 灯

IES 灯可以理解为是一种光域网,而光域网是一种 关于光源亮度分布状况的三维表现形式。光域网是灯光 的一种物理性质,确定光在空气中发散的方式。不同的灯, 在空气中的发散方式是不同的,例如手电筒,它会发射 一个光束,还有一些壁灯、台灯,它们发出的光又是另 外一种形状,那些不同形状的图案就是光域网造成的。

之所以会有不同的图案,是因为每盏灯在出厂时, 厂家对其都指定了不同的光域网。在三维软件中,如果 给灯光指定一个特殊的文件,即可产生与现实生活相同 的发散效果,这种特殊的文件标准格式是.IES 格式。

Cinema 4D 中创建 IES 灯时会弹出一个窗口,提示 加载一个.IES 文件,如图 5-17 所示,这种文件可以在网 上下载。此外,Cinema 4D 本身就提供了很多.IES 文件, 这些文件可以通过选择"窗口"|"内容浏览器"命令, 打开"内容浏览器"来查找,如图 5-18 所示。

图 5-17

图 5-18

如果是从网上下载的光域网文件,那么,在创建 IES 灯时直接加载使用即可。如果是使用 Cinema 4D 提 供的光域网文件,那么还需要进行一些操作。

首先创建一盏聚光灯,然后在聚光灯的"属性"窗 口中切换至"常规"选项卡,在下面的"类型"中选择 IES 选项,如图 5-19 所示。再切换到"光度"选项卡, 此时"光度数据"和"文件名"属性被激活,如图 5-20 所示。

灯光对象 [灯光]								
基本		常规						
噪波 镜		工程						
常规								
○▶颜色▼								
	四	方聚光灯						
	平	行光						
	因	形平行驟光	бЖŢ					
	四	方平行驟光	6%T					
○ 强度	🐑 ie	5						
○ 类型	• 8	exekt						
○ 投影								
O 可见灯光								
○ 没有光照	0 0) 显示光照	Ħ 🗹					

最后在"内容浏览器"中选择一个 IES 光域网文件, 并拖至"文件名"右侧的空白区域中,此时选择的光域 网文件就可以使用了,并且会显示该文件的路径、预览 图像以及其他信息,如图 5-21 所示。

图 5-21

不同的 IES 灯光效果如图 5-22 所示。

图 5-22

5.2.7 远光灯

远光灯发射的光线是沿着某个特定的方向平行传播的,没有距离的限制,除非为其定义了衰减参数,否则没有 起点和终点的概念。远光灯常用来模拟太阳,无论物体位于远光灯的正面还是背面,只要是位于光线的传播方向上, 物体的表面都会被照亮,如图 5-23 所示。

图 5-23

5.2.8 实战——制作体积光

在游戏场景中,遮光物体被光源照射时,在其周围的光呈放射状泄露,这种光效果称为"体积光"。例如,阳 光照到树上,会从树叶的缝隙中透出形成光柱。体积光相比其他的光照效果能给人带来更真实的视觉感受,在渲染 产品时经常用到。

素材文件路径:	素材 \ 第 5 章 \5.2.8
效果文件路径:	效果 \ 第 5 章 \5.2.8. 体积光 .JPG
视频文件路径:	视频\第5章\5.2.8.制作体积光.MP4

01 启动 Cinema 4D, 打开"体积光.c4d"文件,素材中 已经创建好了模型和场景,如图 5-24 所示。

图 5-24

02 在工具栏中单击"聚光灯"按钮 ←, 创建一个聚光灯, 然后在该聚光灯的"属性"窗口中选择"常规"选项卡, 选择"投影"类型为"阴影贴图(软阴影)", 如图 5-25 所示。

图 5-25

30°, "外部角度"设置为 50°, 如图 5-26 所示。

图 5-26

04 再切换至"可见"选项卡,将"亮度"调整为200%,如图 5-27 所示。

5 灯光对象 (灯光)								
基本				可见				
噪波								
○ 内部距	高 0	cm 🛊						
○ 外部題	离 50	00 cm						
○ 相对比	例 10							
○ 采样履	性 25	icm ‡						
○ 亮度	20	00 % 🛊						
○ 尘埃		% \$						
〇 抖动	0	% \$						

图 5-27

05 再切换至"投影"选项卡,将"密度"设置为50%,"投影贴图"设置为500×500,如图 5-28 所示。

躗 灯光	对象 [灯光]				
基本				投影	
噪波					
投影					
○ 投影	明影贴图(软阴影)	-		
0 密度	50 %	6 🗘			
○ 颜色					
○透明	🗹				
○ 修剪改	æ 🛛				
投影测	國 500	x 500			-
○ 水平和	廬 500	÷			
○ 垂直和	廬立 500	ŧ			

图 5-28

16 最后切换至"噪波"选项卡,设置"噪波"为"可见",选择"类型"为"波状湍流","速度"为50%,X、Y、Z轴上的"可见比例"均设置为10cm,"光照比例"设置为1,如图5-29所示。

•	
2 灯光对象 [灯光]	
基本 坐标 常规 细节 可见 投影 光度 (
噪波 镜头光晕 工程	
喉波	
O 噪波 (可见	
O 类型 (波状湍流	
◎ 阶度 4 +	
○ 連度 50 % 🕴	
○ 亮度 0% +	
○ 对比 100 % +	
○ 局部 ☑	
〇可见比例 10 cm + 10 cm + 10 cm +	
〇 光照比例 1 +	

图 5-29

07 调整聚光灯的位置,然后按快捷键 Ctrl+R 或单击工 具栏中的"渲染活动视图"按钮፼,即可得到渲染效果, 如图 5-30 所示。

图 5-30

5.3 灯光参数详解

创建一盏灯光对象后,"属性"窗口中会显示该灯 光的参数,Cinema 4D 提供了各种类型的灯光,这些灯 光的参数大部分都相同。有些特殊的灯光,Cinema 4D 专门设置了一个"细节"选项卡,这里的参数会因为灯 光类型的不同而改变,以区分各种灯光的细节效果。以 泛光灯为例,灯光的"属性"窗口如图 5-31 所示。

5.3.1 常规

"常规"选项卡主要设置灯光的基本属性,包括颜 色、类型和投影等参数,如图 5-32 所示。

图 5-32

下面对常用的几种参数进行介绍。

1. 颜色

用于设置灯光的颜色,灯光的颜色不同,照射在模型上的颜色也会发生改变,如图 5-33 所示。

图 5-33

2. 强度

用于设置灯光的照射强度,也就是灯光的亮度。 数值范围可以超过100%,而且没有上限,0%的灯光强 度则代表灯光没有亮度。不同强度的对比效果如图5-34 所示。

30%

100% 图 5-34

300% 图 5-34 (续)

3. 投影

该参数可以控制光照的投影效果,其包含4个选项, 分别是"无""阴影贴图(软阴影)""光线跟踪(强烈)" 和"区域",如图 5-35 所示。

□投影	无 🗸
○可见灯光	无
□没有光照	阴景须占图 (软阴影)
□环境光照	光线跟踪(强烈)
□ 漫射	区域

图 5-35

★ 无:选择该选项,则灯光照射在物体上不会产生 阴影,如图 5-36 所示。

图 5-36

✦ 阴影贴图(软阴影):灯光照射在物体上时产 生柔和的阴影,阴影的边缘会出现模糊效果,如图 5-37 所示。

图 5-37

✦ 光线跟踪(强烈):灯光照射在物体上时会产生 形状清晰且较为强烈的阴影,阴影的边缘处不会产生任 何模糊效果,如图 5-38 所示。

图 5-38

★ 区域:灯光照射在物体上会根据光线的远近产 生不同的阴影,距离越近阴影就越清晰,距离越远阴影 就越模糊,它产生的是较为真实的阴影效果,如图 5-39 所示。

图 5-39

4. 可见灯光

用于设置在场景中的灯光是否可见以及可见的类型。该参数包含"无""可见""正向测定体积"和"反向测定体积"这4个选项,如图 5-40 所示。

◆ 无: 表示灯光在场景中不可见。

★ 可见:表示灯光在场景中可见,且形状由灯光的 类型决定。选择该选项后,泛光灯在视图中将显示为球形, 且渲染时同样可见,拖曳球形上的黄点可以调节光源的 大小,如图 5-41 所示。

图 5-41

★ 正向测定体积:选择该选项后,灯光照射在物体 上会产生体积光,同时阴影衰减将被减弱。

★ 反向测定体积:选择该选项后,在普通光线产生 阴影的地方会发射光线,常用于制作光线发散特效。

为了方便观察,这里使用聚光灯来做测试,且灯光 的亮度设置为200%。可见灯光设置为"可见"和"正向 测定体积"的效果如图 5-42 所示。

正向测定体积 图 5-42

5.3.2 细节

"细节"选项卡中的参数会因为灯光对象的不同而 有所改变。除了区域光之外,其他几类灯光的"细节" 选项卡中包含的参数大致相同,只是被激活的参数有些 区别,如图 5-43 所示。

细节	
○ 使用内部 🕗	
○ 内部角度 0° ♦	
○ 外部角度 30° +	
○ 宽高比 1 +	
○ 对比 0% ♦	
○ 投影轮廓 □	
○ 形状 矩形	
○ 対象	
O 水平尺寸 200 cm 🕴	
○ 垂直尺寸 200 cm \$	
○ 衰减 〔无	
○ 半径衰减 500 cm ÷	
○ 若色边缘衰减 □ ○ 仅限纵深方向 □	
○ 使用渐变 □	
	É
○ 近处修剪 □ ○ 起点 0 cm • ○ 终点 10 cm •	

图 5-43

下面对常用的几个参数进行介绍。

1. 使用内部 / 内部角度

选中"使用内部"选项后,"内部角度"参数才能 被激活,通过调整该参数,可以设置光线边缘的衰减程度。 高数值将导致光线的边缘较硬,低数值将导致光线的边 缘较柔和,如图 5-44 所示。

低数值

高数值 图 5-44

提示

"使用内部"选项只能用于聚光灯,根据聚光灯类型的不同,"内部角度"可能会显示为"内部半径"。

2. 外部角度

用于调整聚光灯的照射范围,通过灯光对象线框上 的黄点也可以调整,如图 5-45 所示。"外部角度"取值 范围是 0°~ 175°,如果是"外部半径"则没有上限, 但不能是负值。"内部角度"和"内部半径"也是一样。 另外,"外部角度""外部半径"的数值决定了"内部角度" 和"内部半径"参数的最大值,也就是说内部的取值范 围不能超过外部的参数。

图 5-45

3. 宽高比

标准的聚光灯是一个锥体的形状,该参数可以设置 锥体底部圆的横向宽度和纵向高度的比值,取值范围为 0.01~100。

4. 对比

当光线照射到对象上时,对象上的明暗变化会产 生过渡,该参数用于控制明暗过渡的对比度,如图 5-46 所示。

图 5-46

5. 衰减

现实中,一个正常的光源可以照亮周围的环境,同时周围的环境也会吸收这个光源发出的光线,从而使光线的亮度越来越弱,也就是光线随着传播的距离而产生了衰减。在 Cinema 4D 中,虚拟的光源也可以表现这种衰减的现象。在"衰减"下拉列表中包含了5种衰减类型,分别是"无""平方倒数(物理精度)""线性""步幅"和"倒数立方限制",如图 5-47 所示。

衰减	无	-
	平方倒数 (物理精度)	
着色边缘到 使用渐变 颜色	线性 步幅 倒数立方限制	

图 5-47

各种衰减类型的效果如图 5-48 所示。

无

平方倒数(物理精度)

线性 图 5-48

步幅

5.3.3 可见

"可见"选项卡主要用来设置灯光本身的可见效果, 如图 5-49 所示。

灯光对象 [灯光]							
基本				可见			
噪波	镜头光晕	工程					
可见							
○ 使用衰	B 🗹						
○ 衰减 .	10	0% 🛊					
○ 使用达	爆衰减 🔽						
○ 散开达	缘 50)% 🛊					
○ 着色达	爆衰减 🗌						

图 5-49

下面对常用的几个参数进行介绍。

1. 使用衰减

选中"使用衰减"复选框后,下面的"衰减"参数 才会被激活,衰减是指按百分比减少灯光的密度,默认 数值为100%。也就是说从光源的起点到外部边缘之间, 灯光的密度从100%~0%逐渐减少,如图5-50所示。

2. 使用边缘衰减 / 散开边缘

这两个参数只与聚光灯有关,"使用边缘衰减"可 以控制对可见光边缘的衰减效果,如图 5-51 所示。

100%

0% 图 5-50

100%

0% 图 5-51

3. 着色边缘衰减

只对聚光灯有效,同时启用"使用边缘衰减"选项 后才会被激活。选中该复选框后,内部的颜色将会向外 部呈放射状传播,如图 5-52 所示。

图 5-52

5.3.4 投影

每种灯光都有4种投影方式,分别是"无""阴影 贴图(软阴影)""光线跟踪(强烈)"和"区域", 这在前面的"常规"选项卡中已经进行了简单的介绍。"投 影"选项卡可以针对不同的投影方式进行细节化的设置, 如图 5-53 所示。

图 5-53

下面对另外几个参数进行介绍。

1. 密度

该选项可用于改变阴影的强度,如图 5-54 所示。

50%

100% 图 5-54

2. 颜色

该选项用于设置阴影的颜色,如图 5-55 所示。

3.透明

如果赋予对象的材质设置了"透明"或者 Alpha 通道, 那么就需要选中该复选框, 渲染效果如图 5-56 所示。

图 5-56

4. 修剪改变

选中该复选框后,在"细节"选项卡中设置的修剪 参数将会应用到阴影投射和照明中。

5.3.5 光度

"光度"选项卡主要用于设置灯光的亮度,如图 5-57 所示。

2 灯光	对象 [灯光]				
基本				光度	
噪波					
光度					
○ 光度預	廬 🖉				
○强度	1000	÷			
○ 単位 .					
○ 光度数	据 🖸				
文件名					
0 光度尺	च				

下面对常用的几个参数进行介绍。

1. 光度强度 / 强度

创建一盏 IES 灯后, "光度强度"选项就会自动激活,通过调整"强度"数值可以设置 IES 灯光的灯光强度。 这两个参数也可以应用于其他类型的灯光。

2. 单位

除了"强度"参数,该属性同样也可以影响到光照的强度,并且也可以应用于其他类型的灯光。该下拉列 表中包含"烛光(cd)"和"流明(lm)"两个选项, 如图 5-58 所示。

★ 烛光(cd):表示光度强度是通过"强度"参数 定义的。

★ 流明(lm):表示光度强度是通过灯光的形状 来定义的,例如聚光灯,如果增加聚光灯的照射范围, 那么光度强度也会相应增加,反之亦然,如图 5-59 所示。

图 5-59

5.3.6 焦散

焦散是指当光线穿过一个透明物体时,由于物体表 面的不平整,使光线折射而没有平行发射,从而出现了 漫折射,投影表面出现光子分散。使用"焦散"功能可以生成很多精致的效果。在 Cinema 4D 中,如果想要渲染灯光的焦散效果,需要在"渲染设置"窗口中单击"效果"按钮,并选中"焦散"选项,如图 5-60 所示。

O 1	直染设置	ł		- • ×
)ž	# 器 [删除	保存	A
	輸出	复制	▼常規图像	
	保存	粘贴	保存 🖸	
	多通	加载预置		
	-选项	保存预置		
0	立体	中信滤镜		
	Tean	全局光照	图像色彩特性 * sRGB IEC61966-2.1	
U	一材质	外部效果	Alpha 通道	
		对象辉光	直接 Alpha 回	
		方位通道	分离 Alpha	
		景深	包括声音	
		柔和濾镜		
(×	#)	柱面镜头	保存 🖸	
	我的演	八响运动偏相	文件	
		7KEI	格式Photoshop (PSD)	
		法线通道		
		蕉散	10日本 11日 11日 11日 11日 11日 11日 11日 11日 11日 1	
		环境吸收	用户定义层名称 〇	
		高光	直接 Alpha	

图 5-60

"焦散"选项卡如图 5-61 所示,下面对它的一些主要参数进行介绍。

① 灯光对象 [灯光]									
							焦散		
焦散									
○ 表面焦散 🖉									
○ 能量	30 %	¢							
〇 光子	10000	¢							
○ 体积#									
0 能量									
0 光子									

1. 表面焦散

用于激活灯光的表面焦散效果。

2. 能量

用于设置表面焦散光子的初始总能量,主要控制焦 散效果的亮度,同时也影响每一个光子反射和折射的最 大值,如图 5-62 所示。

3. 光子

影响焦散效果的精确度,数值越高效果越精确, 同样,渲染时间也会增加,一般取值范围在10000~ 1000000 最佳,数值低时光子看起来就像一个个白点。

4. 体积焦散 / 能量 / 光子

这3个参数用于设置体积光的焦散效果。

50%

200% 图 5-62

5.3.7 噪波

"噪波"选项卡如图 5-63 所示,主要用于制造一些 特殊的光照效果。下面对其中常用的几个参数进行介绍。

🖉 灯光双	时 象 [灯光]				
基本					
噪波					
噪波					
○ 噪波 .					
0 类型.	柔性満				-
0 阶度.					
1	100	1			
0速度.					
0 亮度 .					
○对比.					
9 局部.	🗹				

图 5-63

1. 噪波

用于选择噪波的方式,包括"无""光照""可见" 和"两者"4个选项,如图 5-64 所示。

噪波	无	-
类型	无	
阶度	光照	
	可见	
	两者	

图 5-64

★ 无:不产生噪波效果,如图 5-65 所示。

图 5-65

+ 光照:选择该选项后,光源的周围会出现一些不规则的噪波,并且这些噪波会随着光线的传播,照射在物体上,如图 5-66 所示。

★ 可见:选择该选项后,噪波不会照射到物体上, 但会影响可见光源。该选项可用于让可见光源模拟烟雾 效果,如图 5-67 所示。

图 5-66

图 5-67

★ 两者: 使"照明"和"可见"选项的两种效果同时出现,如图 5-68 所示。

图 5-68

2. 类型

用于设置噪波的类型,包含"噪波""柔性湍流""刚 性湍流"和"波状湍流"4种,效果如图 5-69 所示。

噪波

柔性湍流

刚性湍流

波状湍流 图 5-69

5.3.8 镜头光晕

"镜头光晕"选项卡用于模拟现实世界中摄像机镜 头产生的光晕效果,镜头光晕可以烘托画面的气氛,在 深色的背景中尤为明显,如图 5-70 所示。

下面对其中的参数进行介绍。

1. 辉光

用于为灯光选择一种镜头光晕的效果,如图 5-71 所示。

2. 亮度

用于设置选择的辉光亮度。

3. 宽高比

用于设置所选择的辉光宽度和高度的比例。

4. "编辑" 按钮

单击该按钮可以打开"辉光编辑器"对话框,从中 可以设置辉光的相应属性,如图 5-72 所示。

5. 反射

为镜头光晕设置一个镜头光斑,如图 5-73 所示,配

合辉光类型可以搭配出多种不同的效果。

5.3.9 实战——制作钻石效果

要表现钻石、玻璃这一类材料,除了将材质设置准 确外,还需要正确的光照效果来进行搭配。

素材文件路径:	素材 \ 第 5 章 \5.3.9	
效果文件路径:	效果 \ 第5章 \5.3.9. 钻石效果 .JPG	
视频文件路径:	视频 \ 第 5 章 \5.3.9. 制作钻石效果 .MP4	

☑ 启动 Cinema 4D, 打开"制作钻石效果.c4d"文件, 素材中已经创建好了钻石模型和其他场景,如图 5-74 所示。

02 在工具栏中单击"聚光灯"按钮 个,创建一盏聚光灯,然后在该聚光灯的"属性"窗口中选择"常规"选项卡,将其光照"强度"调整为120%,如图 5-75 所示。

灯光对象	[灯光]					
基本	坐标	常规				
噪波 镜	头光晕					
常规						
○▶颜色▼						
	*		Å	RGB HSV	K	1ª
	н о•	÷ []				
	5 0%	÷				
	V 100	% \$				
○ 强度	120 %	÷				
○ 类型	• R	光灯				
○ 投影						
O 可见灯光						
			_			

图 5-75

13 切换至"焦散"选项卡,选中"表面焦散"复选框, 然后设置"能量"为300%,"光子"为600000,如图 5-76 所示。

€ 灯光:	对 象 [灯光]				
基本					焦散
噪波					
焦散					
○ 表面魚	戴 🕗				
○ 能量	300 %	÷			
○ 光子 .	60000) \$			
○ 体积焦	散 🗌				
○ 能量 .					
0光子。					
○衰减	〔无				-

图 5-76

Ⅰ 调整聚光灯的位置,然后按快捷键 Ctrl+R 或单击工具栏中的"渲染活动视图"按钮一,即可看到渲染效果,如图 5-77 所示。

图 5-77

5.4 应用技巧

在现实中,摄影师和画家都需要对光有非常好的理 解,因为光是艺术表现的关键。摄影中好的布光能拍出 更好的作品,而CG也和摄影一样,是追求光和影的艺术。 在CG表现时,场景中光源的布置是必须要考虑到位的, 否则很难渲染出高品质的作品,如图 5-78 所示。

图 5-78

当我们站在空旷的草地上,周围没有任何遮挡物时, 太阳就是一个直射光源,直接照亮身体和周围的草地, 草地接收到太阳的光照后,吸收一些光线并漫反射出绿 色的光线,这部分光线间接增强了太阳光的强度,如图 5-79 所示。如果进入伞下的阴影里,对物体而言,太阳 光就不再是直射光源了,照亮物体的都是来自天空和地 面的漫反射光线,如图 5-80 所示。这里的阳光就成为直 射光照,而天空和地面的反射光则成为间接光照,这是 两种不同的光照形式。

图 5-79

图 5-80

5.4.1 3 点照明设置

CG 布光在渲染器发展的早期,无法计算间接光照, 因为背光的地方没有光线进行反射,就会得到一个全黑 的背面。因此模拟物体真实的光照,需要多盏辅助灯光 照射暗部区域,也就形成了众所周知的"3点布光", 也称为"3点照明"的布光手法。如果场景很大,可以 把它拆分成若干个较小的区域进行布光。一般有3盏灯 即可,分别为主体光、辅助光与背景光。

3 点布光的好处是容易学习和理解。它由在一侧的 一个明亮主灯,在对侧的一个弱补充的辅助灯和用来给 物体突出加亮边缘的、在物体后面的背景灯组成,如图 5-81 所示。

3点布光时布光顺序可参考如下3步。

(1) 先确定主体光的位置与强度。

(2) 接着决定辅助光的强度与角度。

(3) 最后分配背景光。

布光效果应当主次分明、互相补充。在 CG 中,这 种布光手法比较传统,且更接近于绘画的手法,利用不 同的灯光对物体的亮部和暗部进行色彩和明度的处理。

在CG中,3点布光最大的问题在于它的刻意性, 这种光照类型在自然界并不存在,因为它的效果太艺术 化,看起来也就较刻意、不真实。渲染器发展到现在, 已经具备了对间接光照进行计算的能力,新的Global Illumination 技术已经解决了我们对暗部处理的问题。有 的渲染器更是提供了进行全局光照明的天空物体。这样 一来,即使不用灯光也可以模拟出真实的光照效果,但 是布光的作用仍然至关重要。

5.4.2 布光方法

100 名灯光师给一个复杂场景布光会有 100 种不同 的方案与效果,但是布光的原则还是会遵守的,例如考 虑灯光的类型、灯光的位置、照射的角度、灯光的强度 和灯光的衰减等。如果想要对环境或物体进行照明,那么, 在布光中可以尝试一些创造性的做法,并研究在自然界 发生了什么,然后制定出自己的解决方案。

1. 灯光类型

进行布光前,首先要确定主光源。如果采用室外光 为主要光源,那么,太阳就是主光源。如果在室内采用 灯光作为主光源,它的位置就非常重要。由于光源照射 角度的不同,阴影产生的面积也会不同。当主光源产生 的阴影面积过大时,就需要增加辅助光源对暗部进行适 当照明。在演播室拍摄节目时,照射主持人的光一般从 前上方偏左或偏右进行照射,这样会在主持人鼻子下方 和颈部留下明显的阴影,为了处理这些阴影,就会使用 一个辅助光照射一个反光板。在拍摄户外电影、电视剧 的片场,也可以看到会有工作人员手持白色板子跟着演 员一起移动,实际上就是为了解决演员面部曝光不足的 问题,如图 5-82 所示。

前光、侧光、背景光等不是相对物体位置而言的, 而是参考摄像机的拍摄方向,如图 5-83 所示。

图 5-82

图 5-83

首先需要确定光线从哪个角度照射到物体上,也就 是光线的方向。选择主光从哪个方向照射是最重要的问 题之一,因为这会对一个场景最终呈现出的氛围,以及 对图像要传达的情绪产生巨大的影响。它基本可以控制 照明的整个基调,在调整灯光的照射角度时,需要仔细 观察明暗面积的比例关系,通过观察可以使调节灯光的 照射角度有章法可循。

光可以很快地照亮整个场景中的可视部分。在照射 范围内,会产生非常均匀的光照效果,物体上的颜色也 会相对柔和。但它的缺陷是缺乏立体感,如果光源很硬 效果看起来会毫无吸引力。

2. 布光步骤

在为场景布光之前,应当明确布光的用途和目的。 布置光源需要考虑是为了满足什么样的需要。换句话说, 场景的基调和气氛是什么?在灯光中表达出的基调,对 整个图像的效果是至关重要的。在某些情况下,唯一的 目的是清晰地看到一个或几个物体,而实际目的是更加 复杂的。

灯光有助于表达一种情感,或引导目光聚焦到一个 特定的位置,可以使场景看起来更有深度和层次。因此, 表达对象和应用领域不同,灯光照明的原则也会不同, 在布光之前清楚照明的目的,然后根据各自的特点分配 灯光才是正确的方法和首要步骤。

★ 来源

在创作逼真的场景时,应该养成从实际照片和优秀 电影中取材的习惯。好的参考资料可以提供一些线索和 灵感。通过分析一张照片中高光和阴影的位置,通常可 以了解对图像起作用的光线的基本位置和强度。通过现 有的原始资料来布光,可以学到很多知识。

◆ 光的方向

在 CG 中模拟真实的环境和空间,一定要形成统一 的光线方向,这也是布光主次原则的体现。

◆ 光的颜色

场景中的灯光颜色极为重要,能够反映画面的气氛 和表现意图。从美术角度来分析,颜色有冷暖之分,不 同的色调会使个人的心理感受不同,如图 5-84 和图 5-85 所示。

图 5-84

图 5-85

冷色为后退色,给人镇静、冷酷、强硬、收缩等感觉。

暖色为前进色,给人亲近、活泼、愉快、温暖、激情和 膨胀等感觉。所以每个画面都要有一个主色调,同时它 们可以是相互联系、相互依存的。因为冷暖色是靠对比 产生的,例如,黄色和蓝色放在一起,黄色就是一种暖色, 但黄色和红色放在一起,黄色就具有了冷色的特征。因此, 在画面确定统一的色调后,画面就可以为大面积的主色 调分配小面积的对比色调。例如,物体的亮部如果是冷 色调的,暗部则为暖色调,反之亦然。

5.5 实战——iPhone X 拍摄布光

对于做电商的读者来说,"商品摄影"这个概念想 必不会陌生,漂亮的产品照片不仅能让人眼前一亮,更 能让人产生购买欲望。以前,大家都需要使用相机来给 自家的产品拍照,而现在则可以通过 Cinema 4D 建模渲 染来完成。本节便介绍如何给制作好的产品模型进行布 光,已达到最佳的渲染效果。

素材文件路径: 素材 \ 第 5 章 \5.5 效果文件路径: 效果 \ 第 5 章 \5.5. iPhone X 拍摄布光 .JPG 视频文件路径: 视频 \ 第 5 章 \5.5. iPhone X 拍摄布光 .MP4

01 启动 Cinema 4D, 打开"iPhone X 拍摄布光.c4d"文件,素材中已经创建好了 iPhone X 的模型,并添加了材质和其他场景,效果如图 5-86 所示。

图 5-86

02 按照3点照明的方法,为场景添加3盏灯光,首先添加主光源。在工具栏中单击"聚光灯"按钮、,创建

一盏聚光灯,接着在"属性"窗口中选择"常规"选项 卡,选择"投影"类型为"阴影贴图(软阴影)",如 图 5-87 所示。

2 灯光;	对象 [灯光]						
基本		常规					
常规							
○▶颜色	•						
	*		Å	RGB HSV	K 🚥	10	A
	но	. 1					
	5 0 2			_			
	3 0 %		_	_			
	V 100	°% ≑		_			
○ 强度 .	100 %	÷					
○ 类型 .	🕈 🛙						
○ 投影 .	明影》	占图 (软阴影	E)				
0 可见灯	光【无						-
○ 没有光)显示光照	gØ				

图 5-87

13 移动主光源。选中创建好的聚光灯,然后将其移动 至模型的左上角位置,如图 5-88 所示。

图 5-88

12 创建辅助光源,辅助光的光度强度应该比主光源弱,同时为了减少计算量,可以不启用"投影"。使用相同的方法,再创建一盏聚光灯,然后在"属性"窗口中选择"常规"选项卡,设置其"强度"为50%,"投影"为"无",如图5-89所示。

05 移动辅助光源。选中作为辅助光源的聚光灯,然后将其移至模型的右上角,如图 5-90 所示。

图 5-90

06 创建背景光源。本例制作了弯曲的反光棚效果,因此背景光无须设置在模型后方,可以设置在旁边的位置,通过反射效果来发挥背景光的作用。

07 在工具栏中单击"聚光灯"按钮 个,创建一盏聚光灯, 设置其"强度"为 50%, "投影"为"无",然后选中 该聚光灯,并移动至模型的右后方,如图 5-91 所示。

图 5-91

● 調整视图角度,然后按快捷键 Ctrl+R 或单击工具栏
中的"渲染活动视图"按钮
● 即可得到渲染效果,如
图 5-92 所示。

图 5-92