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We will now consider abstract DP models that are intermediate between
the contractive models of Chapter 2, where all stationary policies involve a
contraction mapping, and noncontractive models to be discussed in Chap-
ter 4, where there are no contraction-like assumptions. A representative
example of such an intermediate model is the stochastic shortest path prob-
lem of Example 1.2.6 (SSP for short). In one of the main versions of an
SSP theory, there are two types of policies: those that are proper where
the mapping Tµ is a contraction with respect to a weighted sup-norm, and
those that are improper , where Tµ is not a contraction with respect to any
norm. As noted in Example 1.2.6, results that are comparable to the ones
for discounted finite-state MDP have been obtained with appropriate as-
sumptions that guarantee among others that improper policies are “bad”
in the sense that they have infinite cost from some initial state.

In this chapter we introduce models where, as in SSP problems, poli-
cies are divided into two groups, one of which has favorable characteristics.
We loosely refer to such models as semicontractive to indicate that these
favorable characteristics include contraction-like properties of the mapping
Tµ. To develop a more broadly applicable theory, we replace the notion of
contraction of Tµ with a notion of regularity of µ within an appropriate set

S (roughly, this is a form of “local stability” of Tµ, which ensures that the
cost function Jµ is the unique fixed point of Tµ within S, and that T k

µJ
converges to Jµ regardless of the choice of J from within S). We allow that
some policies are regular in this sense while others are not, and impose
further conditions ensuring that there exist optimal policies that are regu-
lar. Under a variety of assumptions, we show results that resemble those
available for SSP problems: that J* is a fixed point of T , that the Bellman
equation J = TJ has a unique solution, at least within a suitable class of
functions, and that variants of the VI and PI algorithms are valid.

We note that the term “semicontractive” is not used in a precise
mathematical sense here. Rather it refers qualitatively to a collection of
models where some policies have a regularity/contraction-like property but
others do not. In particular, in this chapter and the next one, we consider
several alternative assumptions for different semicontractive models.

The chapter is organized as follows. In Section 3.1, we introduce
the notion of a regular policy, and we develop some of the basic results.
In Section 3.2, we discuss related lines of analysis to address some major
special cases that bear similarity to SSP problems. In Section 3.3, we focus
on VI and PI-type algorithms.

3.1 SEMICONTRACTIVE MODELS AND REGULAR POLICIES

Our basic model for this chapter and the next one is similar to the one
of Chapter 2, but the assumptions are different. We will maintain the
monotonicity assumption, but we will weaken the contraction assumption,
and we will introduce some other conditions in its place.
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In our analysis of this chapter, the optimal cost function J* will typi-
cally be real-valued. However, the cost function Jµ of some policies µ may
take infinite values for some states. To accommodate this, we will use the
set of extended real numbers ℜ∗ = ℜ ∪ {∞,−∞}, and the set of all ex-
tended real-valued functions J : X 7→ ℜ∗, which we denote by E(X). We
denote by R(X) the set of real-valued functions J : X 7→ ℜ, and by B(X)
the set of real-valued functions J : X 7→ ℜ that are bounded with respect
to a given weighted sup-norm. Throughout this chapter and the next two,
when we write lim, lim sup, or lim inf of a sequence of functions we mean
it to be pointwise. We also write Jk → J to mean that Jk(x) → J(x) for
each x ∈ X ; see our notational conventions in Appendix A.

As in Chapters 1 and 2, we introduce the set X of states and the
set U of controls, and for each x ∈ X , the nonempty control constraint
set U(x) ⊂ U . We denote by M the set of all functions µ : X 7→ U with
µ(x) ∈ U(x), for all x ∈ X , and by Π the set of nonstationary policies
π = {µ0, µ1, . . .}, with µk ∈ M for all k. We refer to a stationary policy
{µ, µ, . . .} simply as µ. We introduce a mapping H : X ×U ×E(X) 7→ ℜ∗,
satisfying the following condition.

Assumption 3.1.1: (Monotonicity) If J, J ′ ∈ E(X) and J ≤ J ′,
then

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x).

The preceding monotonicity assumption will be in effect throughout
this chapter. Consequently, we will not mention it explicitly in various

propositions . We define the mapping T : E(X) 7→ E(X) by

(TJ)(x) = inf
u∈U(x)

H(x, u, J), ∀ x ∈ X, J ∈ E(X),

and for each µ ∈ M the mapping Tµ : E(X) 7→ E(X) by

(TµJ)(x) = H
(

x, µ(x), J
)

, ∀ x ∈ X, J ∈ E(X).

The monotonicity assumption implies the following properties for all J, J ′ ∈
E(X) and k = 0, 1, . . .,

J ≤ J ′ ⇒ T kJ ≤ T kJ ′, T k
µJ ≤ T k

µJ ′, ∀ µ ∈ M,

J ≤ TJ ⇒ T kJ ≤ T k+1J, T k
µJ ≤ T k+1

µ J, ∀ µ ∈ M.

We now define cost functions associated with Tµ and T . In Chapter
2 our starting point was to define Jµ and J* as the unique fixed points of
Tµ and T , respectively, based on the contraction assumption used there.
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However, under our assumptions in this chapter this is not possible, so we
use a different definition, which nonetheless is consistent with the one of
Chapter 2 (see Section 2.1, following Prop. 2.1.2). We introduce a function
J̄ ∈ E(X), and we define the infinite horizon cost of a policy in terms of
the limit of its finite horizon costs with J̄ being the cost function at the
end of the horizon.

Definition 3.1.1: Given a function J̄ ∈ E(X), for a policy π ∈ Π
with π = {µ0, µ1, . . .}, we define the cost function of π by

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J̄)(x), ∀ x ∈ X.

In the case of a stationary policy µ ∈ M, the cost function of µ is
denoted by Jµ and is given by

Jµ(x) = lim sup
k→∞

(T k
µ J̄)(x), ∀ x ∈ X.

The optimal cost function J* is given by

J*(x) = inf
π∈Π

Jπ(x), ∀ x ∈ X.

An optimal policy π∗ ∈ Π is one for which Jπ∗ = J*. Note two important
differences from Chapter 2:

(1) Jµ is defined in terms of a pointwise lim sup rather than lim, since we
don’t know whether the limit exists.

(2) Jπ and Jµ in general depend on J̄ , so J̄ becomes an important part
of the problem definition.

Similar to Chapter 2, under the assumptions to be introduced in this chap-
ter, stationary policies will turn out to be “sufficient” in the sense that the
optimal cost obtained with nonstationary policies is matched by the one
obtained by stationary ones.

Regular Policies

Our objective in this chapter is to construct an analytical framework with
a strong connection to fixed point theory, based on the idea of separating
policies into those that have “favorable” characteristics and those that do
not. It would then appear that a favorable property for a policy µ is that
Jµ is a fixed point of Tµ. However, Jµ may depend on J̄ , even though
Tµ does not depend on J̄ . It would thus appear that another favorable
property for µ is that Jµ stays the same if J̄ is changed arbitrarily within
some set S. We express these two properties with the following definition.
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S-Regular policy µ S-Irregular policy µ̄

J Jµ

Jµ
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Figure 3.1.1. Illustration of S-regular and S-irregular policies. Policy µ is S-
regular because Jµ ∈ S and T k

µJ → Jµ for all J ∈ S. Policy µ is S-irregular.

Definition 3.1.2: Given a set of functions S ⊂ E(X), we say that a
stationary policy µ is S-regular if:

(a) Jµ ∈ S and Jµ = TµJµ.

(b) T k
µJ → Jµ for all J ∈ S.

A policy that is not S-regular is called S-irregular .

Thus a policy µ is S-regular if the VI iteration corresponding to µ,
Jk+1 = TµJk, represents a dynamic system that has Jµ as its unique equi-
librium within S, and is asymptotically stable in the sense that the iteration
converges to Jµ, starting from any J ∈ S (see Fig. 3.1.1).

For orientation purposes, we note the distinction between the set S
and the problem data: S is an analytical device, and is not part of the
problem’s definition. Its choice, however, can enable analysis and clarify
properties of Jµ and J*. For example, we will later prove local fixed point
statements such as

“J* is the unique fixed point of T within S”

or local region of attraction assertions such as

“the VI sequence {T kJ} converges to J* starting from any J ∈ S.”

Results of this type and their proofs depend on the choice of S: they may
hold for some choices but not for others.

Generally, with our selection of S we will aim to differentiate between
S-regular and S-irregular policies in a manner that produces useful results
for the given problem and does not necessitate restrictive assumptions. Ex-
amples of sets S that we will use are R(X), B(X), and subsets of R(X),
B(X), and E(X) involving functions J satisfying J ≥ J* or J ≥ J̄ . How-
ever, there is a diverse range of other possibilities, so it makes sense to



90 Semicontractive Models Chap. 3

J TJ

= 0 TµJ

= 0

−

ℜ-regular

−

-regular ℜ-irregular

) Jµ

Figure 3.1.2. Illustration of S-regular and S-irregular policies for the case where
there is only one state and S = ℜ. There are three mappings Tµ corresponding
to S-irregular policies: one crosses the 45-degree line at multiple points, another
crosses at a single point but at an angle greater than 45 degrees, and the third is
discontinuous and does not cross at all. The mapping Tµ of the ℜ-regular policy
has Jµ as its unique fixed point and satisfies T k

µJ → Jµ for all J ∈ ℜ.

postpone making the choice of S more specific. Figure 3.1.2 illustrates the
mappings Tµ of some S-regular and S-irregular policies for the case where
there is a single state and S = ℜ. Figure 3.1.3 illustrates the mapping
Tµ of an S-regular policy µ, where Tµ has multiple fixed points, and upon
changing S, the policy may become S-irregular.

3.1.1 Fixed Points, Optimality Conditions, and Algorithmic
Results

We will now introduce an analytical framework where S-regular policies
are central. Our focus is reflected by our first assumption in the following
proposition, which is that optimal policies can be found among the S-
regular policies, i.e., that for some S-regular µ∗ we have J* = Jµ∗ . This
assumption implies that

J* = Jµ∗ = Tµ∗Jµ∗ ≥ TJµ∗ = TJ*,

where the second equality follows from the S-regularity of µ∗. Thus the
Bellman equation J* = TJ* follows if µ∗ attains the infimum in the rela-
tion TJ* = infµ∈M TµJ*, which is our second assumption. In addition to
existence of solution of the Bellman equation, the regularity of µ∗ implies
a uniqueness assertion and a convergence result for the VI algorithm, as
shown in the following proposition.
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J TJ

= 0 TµJ

= 0 J̄ = 0 ) Jµ
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S S-regular

Ĵ T k
µ J̄

J̃ J

Figure 3.1.3. Illustration of a mapping Tµ where there is only one state and S

is a subset of the real line. Here Tµ has two fixed points, Jµ and J̃ . If S is as
shown, µ is S-regular. If S is enlarged to include J̃ , µ becomes S-irregular.

Proposition 3.1.1: Let S be a given subset of E(X). Assume that:

(1) There exists an S-regular policy µ∗ that is optimal, i.e., Jµ∗ = J∗.

(2) The policy µ∗ satisfies Tµ∗J∗ = TJ∗.

Then the following hold:

(a) The optimal cost function J* is the unique fixed point of T within
the set {J ∈ S | J ≥ J*}.

(b) We have T kJ → J* for every J ∈ S with J ≥ J*.

(c) An S-regular policy µ that satisfies TµJ* = TJ* is optimal. Con-
versely if µ is an S-regular optimal policy, it satisfies TµJ* =
TJ*.

Proof: (a) The proof uses a more refined version of the argument preced-
ing the statement of the proposition. We first show that any fixed point J
of T that lies in S satisfies J ≤ J*. Indeed, if J = TJ , then for the optimal
S-regular policy µ∗, we have J ≤ Tµ∗J , so in view of the monotonicity of
Tµ∗ and the S-regularity of µ∗,

J ≤ lim
k→∞

T k
µ∗J = Jµ∗ = J*.

Thus the only function within {J ∈ S | J ≥ J*} that can be a fixed point
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of T is J*. Using the optimality and S-regularity of µ∗, and condition (2),
we have

J* = Jµ∗ = Tµ∗Jµ∗ = Tµ∗J* = TJ*,

so J* is a fixed point of T . Finally, J* ∈ S since J* = Jµ∗ and µ∗ is
S-regular, so J* is the unique fixed point of T within {J ∈ S | J ≥ J*}.

(b) For the optimal S-regular policy µ∗ and any J ∈ S with J ≥ J*, we
have

T k
µ∗J ≥ T kJ ≥ T kJ* = J*, k = 0, 1, . . . .

Taking the limit as k → ∞, and using the fact

lim
k→∞

T k
µ∗J = Jµ∗ = J*,

which holds since µ∗ is S-regular and optimal, we see that T kJ → J*.

(c) If µ satisfies TµJ* = TJ*, then using part (a), we have TµJ* = J*

and hence limk→∞ T k
µJ* = J*. If µ is in addition S-regular, then Jµ =

limk→∞ T k
µJ* = J* and µ is optimal. Conversely, if µ is optimal and S-

regular, then Jµ = J* and Jµ = TµJµ, which combined with J* = TJ* [cf.
part (a)], yields TµJ* = TJ*. Q.E.D.

Note that given condition (1) of the proposition, condition (2) is
equivalent to the seemingly weaker assumption that some S-regular µ sat-
isfies TµJ* = TJ*. To see this note that if this latter condition holds
together with condition (1), we have

Jµ∗ = Tµ∗Jµ∗ = Tµ∗J* ≥ TJ* = TµJ* = TµJµ∗ ≥ lim
k→∞

T k
µJµ∗ = Jµ,

where the first two equalities follow from the S-regularity and optimality of
µ∗, the second inequality follows from the monotonicity of Tµ, and the last
equality follows from the S-regularity of µ. Since µ∗ is optimal, it follows
that µ is also optimal, so equality holds in the above relation, and we have
Tµ∗J* = TJ*, implying condition (2) as stated in the proposition.

Let us also show an equivalent variation of the preceding proposition,
for problems where the validity of Bellman’s equation J* = TJ* can be
independently verified. We will later encounter models where this can be
done (e.g., the perturbation model of Section 3.2.2, and the monotone
increasing and monotone decreasing models of Section 4.3).

Proposition 3.1.2: Let S be a given subset of E(X). Assume that:

(1) There exists an S-regular policy µ∗ that is optimal, i.e., Jµ∗ = J∗.
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(2) We have J* = TJ*.

Then the assumptions and the conclusions of Prop. 3.1.1 hold.

Proof: We have

J* = Jµ∗ = Tµ∗Jµ∗ = Tµ∗J*,

so, using also the assumption J* = TJ*, we obtain Tµ∗J* = TJ*. Hence
condition (2) of Prop. 3.1.1 holds. Q.E.D.

The following proposition is a special case of Prop. 3.1.1. It applies
when functions in S are real-valued, and through its condition (1), it re-
quires that S-irregular policies have a certain “infinite cost-type” property.
Conditions of this type will appear prominently in Section 3.2 [see Assump-
tions 3.2.1(c) and 3.2.3(b)].

Proposition 3.1.3: Let S be a given subset of R(X). Assume that:

(1) There exists an optimal S-regular policy, and for every S-irregular
policy µ, there is at least one state x ∈ X such that

lim sup
k→∞

(T k
µJ*)(x) = ∞.

(2) There exists a policy µ such that TµJ* = TJ*.

Then the assumptions and the conclusions of Prop. 3.1.1 hold.

Proof: In view of the remark following the proof of Prop. 3.1.1, it will
suffice to show that the policy µ of condition (2) is S-regular. Let µ satisfy
TµJ* = TJ*, and let µ∗ be an optimal S-regular policy. Then for all k ≥ 1,

Jµ∗ = Tµ∗Jµ∗ ≥ TJµ∗ = TµJµ∗ ≥ T k
µJµ∗ ,

where the first equality follows from the definition of an S-regular policy,
and the second inequality follows from the monotonicity of Tµ. If µ is
S-irregular, by taking the limit as k → ∞ in the preceding relation, the
right-hand side tends to ∞ for some x ∈ X , while the left-hand side is finite
since Jµ∗ ∈ S ⊂ R(X) - a contradiction. Thus µ is S-regular. Q.E.D.

The examples of Fig. 3.1.2 show how Bellman’s equation may fail in
the absence of existence of an optimal S-regular policy [cf. condition (1)
of Props. 3.1.1-3.1.3]. Consider for instance a problem where there is only
one policy µ that is S-irregular and Tµ has no fixed point.
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J TJ
= 0

J̄ = 0Jµ = J∗ Jµ

ℜ-regular

−

-regular ℜ-irregular

TµJ T

J TµJ

J̄ T k
µ J̄

∗ J∗

J TJ∗

Figure 3.1.4. Illustration of why condition (2) is essential in Prop. 3.1.1. Here
there is only one state and S = ℜ. There are two stationary policies: µ for which
Tµ is a contraction, so µ is ℜ-regular, and µ for which Tµ has multiple fixed
points, so µ is ℜ-irregular. Moreover, Tµ is discontinuous from above at Jµ as
shown. Here, it can be verified that Tµ0

· · ·Tµk
J̄ ≥ Jµ for all µ0, . . . , µk and k,

so that Jπ ≥ Jµ for all π and the S-regular policy µ is optimal. However, µ does

not satisfy TµJ
∗ = TJ∗ [cf. condition (2) of Prop. 3.1.1] and we have J∗ 6= TJ∗.

Here the conclusions (a) and (c) of Prop. 3.1.1 are violated.

Another example that illustrates the need for existence of an optimal
S-regular policy is the classical blackmailer problem, described in Exercise
3.1. This is a one-state problem, where Tµ is a contraction for all µ, so
all policies are ℜ-regular, but we have J* = −∞, so there is no optimal
stationary policy. Here Bellman’s equation, J = TJ , has no solution within
ℜ (although we do have J* = TJ*). Moreover, it can be shown that
there exists a nonstationary optimal policy for this problem; see [Ber12a]
(Example 3.2.1).

Figure 3.1.4 shows what may happen if condition (2) of Prop. 3.1.1
is violated. The figure shows how we can then have J* 6= TJ*, and un-
derscores the importance of existence of an S-regular µ satisfying the op-
timality equation TµJ* = TJ* for a strong connection of our framework
with fixed point theory. This condition will be assumed either directly or
indirectly, via other conditions, throughout our analysis of semicontractive
models.

The two conditions of Props. 3.1.1-3.1.3 may not be easily verified in
a given problem. However, they can often be guaranteed through other
reasonable conditions, in which case Props. 3.1.1-3.1.3 can be brought to
bear on the analysis. We will encounter several such instances in Sections
3.2, 4.4, and 4.5.

Regardless of their assumptions, some of the conclusions (a)-(c) of
Props. 3.1.1-3.1.3 are not as strong as one would like. In particular, part (a)
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J TJ

= 0 TµJ

= 0

J̄ = 0

S S-regular

Ĵ T k
µ J̄

Jµ = J∗

S S

Fixed Points of Tµ

Figure 3.1.5. Illustration of multiplicity of fixed points J satisfying J ≤ J∗,
under the assumptions of Props. 3.1.1-3.1.2. Here there is only one state, so S is
a subset of the real line, and there is only one policy µ (so Jµ = J∗), which is
S-regular for S = {J | J ≥ Jµ}.

asserts uniqueness of the fixed point of T only within the set {J ∈ S | J ≥
J*}. One may hope that there would be a unique fixed point, at least within
S. Similarly, part (b) asserts the convergence of T kJ to J* only for J in
the set {J ∈ S | J ≥ J*}, and one would like to assert convergence starting
anywhere within S. These results cannot be improved in the absence of
additional conditions, as can be illustrated with simple examples involving
a single policy; see Fig. 3.1.5. The deterministic shortest path problem with
zero length cycles provides an interesting practical context where there may
exist additional fixed points J of T that do not satisfy J ≥ J* (see the next
subsection). However, with additional conditions, one may be able to show
uniqueness of the fixed point of T within S, and demonstrate an enlarged
region of initial conditions J from which T kJ converges to J* (see for
example Sections 3.2.1 and 4.4.1).

We finally note a subtle point in part (c) of Props. 3.1.1-3.1.2, which
leaves open the possibility that the optimality condition TµJ* = TJ* is
satisfied by a nonoptimal S-irregular µ. Indeed this can happen as can be
shown with simple examples; see Fig. 3.1.6. †

† In the important case where J̄ ≤ J∗, we can show that the condition
TµJ

∗ = TJ∗ implies that µ is optimal, regardless of whether it is S-regular or
not. The reason is that in this case we have

T
k
µ J̄ ≤ T

k
µJ

∗ = T
k
J
∗ = J

∗
,

and taking the lim sup as k → ∞, we obtain Jµ ≤ J∗, so µ is optimal. Note that

the condition J̄ ≤ J∗ holds for the monotone increasing models of Section 4.3.
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J TJ
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J̄ = 0Jµ = J∗ Jµ
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J TµJ

J̄ T k
µ J̄

Figure 3.1.6. Illustration of a nonoptimal S-irregular policy µ that satisfies the
optimality condition TµJ

∗ = TJ∗. Here there is only one state and S = ℜ. There
are two policies: µ for which Tµ is a contraction, so µ is ℜ-regular, and µ for
which Tµ has two fixed points, so µ is ℜ-irregular. For J̄ as shown in the figure,
µ is nonoptimal, yet it satisfies TµJ

∗ = TJ∗.

Policy Iteration

We established in Chapter 2 the significance of PI and its variations as
a major class of computational methods for abstract DP. However, for
semicontractive models, the convergence properties of PI are complicated,
and under the conditions of Props. 3.1.1-3.1.2, the sequence of generated
policies may not converge to an optimal policy.

What can be proved is that if µ and µ are S-regular policies that
satisfy the policy improvement equation TµJµ = TJµ, then Jµ ≤ Jµ. To
see this note that by using the S-regularity of µ, we have

Jµ = TµJµ ≥ TJµ = Tµ̄Jµ ≥ T k
µ̄Jµ, k ≥ 1,

where the last inequality holds by the monotonicity of Tµ̄. By taking the
limit as k → ∞ in the preceding relation and using the S-regularity of µ,
we obtain Jµ ≥ Jµ̄.

The policy improvement relation Jµ ≥ Jµ̄ shows that the PI algo-
rithm, when restricted to S-regular policies, generates a nonincreasing
sequence {Jµk}, but this does not guarantee that Jµk ↓ J*. Moreover,
guaranteeing that the policies µk are S-regular may not be easy since the
equation TµJµ = TJµ may be satisfied by an S-irregular µ, in which case
there is no guarantee that Jµ ≤ Jµ, and an oscillation between policies
may occur. This can be seen from the example of Fig. 3.1.7, where there
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J TJ
= 0

J̄ = 0Jµ

ℜ-regular

ℜ-regular
TµJ T

−
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J TµJ J̄ T k

µ J̄

µ JµJµ∗ = J∗

J Tµ∗J
J∗

= TJ∗

Figure 3.1.7. Oscillation of PI between two nonoptimal policies: an S-regular
policy µ and an S-irregular policy µ satisfying

TµJµ = TJµ, TµJµ = TJµ.

Here there is only one state and S = ℜ. In addition to µ and µ, there is a third
policy µ∗, which is S-regular and optimal. In this example all the assumptions
and conclusions of Props. 3.1.1-3.1.2 are satisfied.

is oscillation between two nonoptimal policies: an ℜ-regular policy µ and
an ℜ-irregular policy µ satisfying

TµJµ = TJµ, TµJµ = TJµ.

A similar example of PI oscillation will be given for deterministic short-
est path problems with zero length cycles in the next subsection. Thus
additional assumptions or modifications of the PI algorithm are needed to
improve its reliability. We will address this issue in Section 3.3.2, as well
as in Sections 4.4 and 4.5 of the next chapter.

3.1.2 Illustrative Example: Deterministic Shortest Path
Problems

In this section, we will highlight some of the analytical issues raised in
the preceding subsection through the classical deterministic shortest path
problem described in Example 1.2.7. We have a graph of n nodes x =
1, . . . , n, plus the destination 0, and an arc length axy for each directed
arc (x, y). Here X = {1, . . . , n}. A policy chooses at state/node x ∈ X
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an outgoing arc from x. Thus the controls available at x can be identified
with the outgoing neighbors of x [the nodes u such that (x, u) is an arc].
The corresponding mapping H is given by

H(x, u, J) =

{

axu + J(u) if u 6= 0,
ax0 if u = 0,

and J̄ = 0.
We will consider S-regularity with S = ℜn. A policy µ defines a

graph whose arcs are
(

x, µ(x)
)

, x = 1, . . . , n. If this graph contains a cycle
with m arcs, x1 → x2 → · · · → xm → x1, with length L = ax1x2 + · · · +
axm−1xm + axmx1 , then it can be seen that for all k ≥ 1, we have

(T km
µ J)(x1) = kL+ J(x1).

Thus such a policy cannot be ℜn-regular (and if L 6= 0, its cost function
Jµ has some infinite entries, so it is outside ℜn). By contrast if a policy
defines a graph that is acyclic, it can be verified to be ℜn-regular.

Let us assume now that all cycles have positive cost (L > 0 above),
and that every node is connected to the destination with some path (this
is a common assumption in deterministic shortest path problems, which
will be revisited and generalized considerably in Section 3.2.1). Then every
ℜn-irregular policy has infinite cost starting from some node/state, and it
can be shown that there exists an optimal ℜn-regular policy. Thus Prop.
3.1.3 applies, and guarantees that J* is the unique fixed point of T within
the set {J | J ≥ J*}, and that the VI algorithm converges to J* starting
only from within that set. Actually the uniqueness of the fixed point and
the convergence of VI can be shown within the entire space ℜn. This is
well-known in shortest path theory, and will be covered by results to be
given in Section 3.2.1.

In the other extreme case where there is a cycle of negative cost, there
are ℜn-irregular policies that are optimal and no ℜn-regular policy can be
optimal. Thus Props. 3.1.1-3.1.3 do not apply in this case.

The case where there is a cycle with zero cost exhibits the most com-
plex behavior and will be illustrated for the example of Fig. 3.1.8. Here

X = {1, 2}, U(1) = {0, 2}, U(2) = {1}, J̄(1) = J̄(2) = 0.

There are two policies:

µ : where µ(1) = 0, corresponding to the path 2 → 1 → 0,

µ : where µ(1) = 2, corresponding to the cycle 1 → 2 → 1,

and the corresponding mapping H is

H(x, u, J) =







b if x = 1, u = 0,
a+ J(2) if x = 1, u = 2,
a+ J(1) if x = 2, u = 1.

(3.1)
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a

a

t b
1 2 a 1 2

. Under these conditions, the Bellman equation

J(1) = min
{

b, a+ J(2)
}

, J

, J(2) = a+ J(1),

t b Destination

a 0 1 2

Figure 3.1.8. A deterministic shortest path problem with nodes 1, 2, and desti-
nation 0. Arc lengths are shown next to the arcs.

The Bellman equation is given by

J(1) = min
{

b, a+ J(2)
}

, J(2) = a+ J(1), (3.2)

while the VI algorithm takes the form

Jk+1(1) = min
{

b, a+ Jk(2)
}

, Jk+1(2) = a+ Jk(1). (3.3)

Here the policy µ is ℜ2-regular [the VI for µ is Jk+1(1) = b, Jk+1(2) =
a + Jk(1)], while the policy µ is ℜ2-irregular [the VI for µ is Jk+1(1) =
a+ Jk(2), Jk+1(2) = a+ Jk(1)].

In the case where the cycle has zero length, so a = 0, there are two
possibilities, b ≤ 0 and b > 0, which we will consider separately:

(a) a = 0, b ≤ 0: Here the ℜ2-regular policy is optimal, and Prop. 3.1.1
applies. Bellman’s equation (3.2) has the unique solution

J*(1) = b, J*(2) = b,

within the set ℜ2, and the VI algorithm (3.3) converges to J* from
any starting J0 ≥ J*. However, it can be verified that Bellman’s
equation has multiple solutions: the set of solutions is

{

J | J(1) = J(2), J ≤ J*
}

,

and VI starting from one of these solutions, will keep generating that
solution. Moreover we can verify that PI may oscillate between the
optimal ℜ2-regular policy and the ℜ2-irregular policy (which is nonop-
timal if b < 0). Indeed, the ℜ2-irregular policy µ is evaluated as
Jµ(1) = Jµ(2) = 0, while the ℜ2-regular policy µ is evaluated as
Jµ(1) = Jµ(2) = b, so in the policy improvement phase of the algo-
rithm, we have

µ(1) ∈ argmin
{

b, Jµ(2)
}

, µ(1) ∈ argmin
{

b, Jµ(2)
}

.
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Thus policy improvement starting with µ yields µ, and starting with
µ may yield µ, with the oscillatory sequence {µ, µ, µ, µ, . . .} resulting.
Note that here we have TµJ* = TJ*, so the optimality condition of
Prop. 3.1.1(b) is attained by µ, which is nonoptimal when b < 0.

(b) a = 0, b > 0: Here the unique optimal policy is the ℜ2-irregular µ,
and Props. 3.1.1-3.1.3 do not apply. The policy generates a sequence
of cycles 1 → 2 → 1, rather than a path that leads to the destination.
In this case, the abstract DP model based on the mapping H of Eq.
(3.1) cannot be used to model the shortest path problem (its optimal
solution does not yield paths from nodes 1 and 2 to the destination).
However, we may still be interested in finding an optimal policy within
the class of ℜ2-regular policies. It turns out that we may address
this problem by using a perturbation approach, which is described in
Section 3.2.2. In particular, we will add a small amount δ > 0 to the
length of each arc. This has a strong effect on the problem: the cost
function of the ℜ2-irregular policy becomes infinite, while the cost
function of the ℜ2-regular policy changes by an O(δ) amount. Thus
with δ > 0, we obtain the acyclic ℜ2-regular policy µ.

3.2 IRREGULAR POLICIES AND A PERTURBATION
APPROACH

In this section we will use the model and the results of the preceding section
as a starting point and motivation for the analysis of various special cases.
In particular, we will introduce various analytical techniques and alterna-
tive conditions, in order to strengthen the results of Props. 3.1.1-3.1.3, and
to extend the existing theory of the SSP problem of Example 1.2.6.

3.2.1 The Case Where Irregular Policies Have Infinite Cost

A weakness of Props. 3.1.1-3.1.3 is that it is sometimes difficult to verify
their assumptions, particularly the existence of an optimal S-regular policy.
In this section we will use the following assumption that combines elements
of the assumptions of these propositions, indirectly guarantees the existence
of an optimal S-regular policy, and yields stronger results.

Assumption 3.2.1: We are given a subset S ⊂ R(X) such that the
following hold:

(a) S contains J̄ , and has the property that if J1, J2 are two functions
in S, then S contains all functions J with J1 ≤ J ≤ J2.
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(b) The function Ĵ given by

Ĵ(x) = inf
µ:S-regular

Jµ(x), x ∈ X,

belongs to S.

(c) For each S-irregular policy µ and each J ∈ S, there is at least
one state x ∈ X such that

lim sup
k→∞

(T k
µJ)(x) = ∞. (3.4)

(d) The control set U is a metric space, and the set

{u ∈ U(x) | H(x, u, J) ≤ λ}

is compact for every J ∈ S, x ∈ X , and λ ∈ ℜ.

(e) For each sequence {Jm} ⊂ S with Jm ↑ J for some J ∈ S we
have

lim
m→∞

H(x, u, Jm) = H (x, u, J) , ∀ x ∈ X, u ∈ U(x).

(f) For each function J ∈ S, there exists a function J ′ ∈ S such that
J ′ ≤ J and J ′ ≤ TJ ′.

Note that the preceding assumption requires that S is a set of real-
valued functions; this is similar to Prop. 3.1.3, and it allows us to make use
of Eq. (3.4) in the subsequent analysis. Part (a) holds for some common
choices of S, such as when S = R(X) or S = B(X), or when S is a
subset of R(X) or B(X) of the form S =

{

J ∈ R(X) | J ≥ J ′
}

or

S =
{

J ∈ B(X) | J ≥ J ′
}

for a given function J ′ in R(X) or B(X),
respectively. For a finite number n of states, R(X) and B(X) can both
be identified with ℜn, while otherwise R(X) may be simpler as it does not
require the use of a norm. On the other hand, for an infinite number of
states, the choice between R(X) and B(X) may have a substantial impact
on whether a policy µ is S-regular or not. In particular, T k

µJ may converge
to Jµ for all J ∈ B(X) but not for all J ∈ R(X), because TµJ ∈ B(X) for
J ∈ B(X) while TµJ /∈ R(X) for some J ∈ R(X). This can happen even
if Tµ is a contraction mapping with respect to the norm of B(X). Thus
some care is needed in deciding whether S should be a subset of R(X) or
a subset of B(X).
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Since part (b) requires that Ĵ belongs to S, and is therefore real-
valued, it also implies that there exists at least one S-regular policy [other-
wise the infimum in part (b) is taken over the empty set, and Ĵ(x) = ∞ for
all x]. If S satisfies part (a), then part (b) holds if and only if there exists
at least one S-regular policy, and also there exists a function in S that is
a lower bound to the cost function of all S-regular policies. The existence
of such a lower bound is essential, as can be shown by the blackmailer
problem of Exercise 3.1.

Part (c) asserts among others that an S-irregular policy cannot be
optimal, and is consistent with our analytical approach for semicontractive
models, which relies on the dominance of S-regular policies (cf. Prop. 3.1.3).
Part (e) is a mild technical continuity assumption that is needed for the
subsequent analysis. Part (f) is also of technical nature, but it may not be
satisfied in some problems of interest, a notable case being multiplicative
models discussed in Example 1.2.8, where

H(x, u, J) =
∑

y∈X

pxy(u)g(x, u, y)J(y),

S contains only strictly positive functions, and the function g may take
values less than 1; see also the affine monotonic and exponential cost SSP
models of Section 4.5.

The compactness part (d) of the semicontraction Assumption 3.2.1
plays a key role for asserting the existence of an optimal S-regular policy, as
well as for various proof arguments (see Exercise 3.1 for counterexamples).
It implies that for every J ∈ S, the infimum in the equation

(TJ)(x) = inf
u∈U(x)

H(x, u, J), (3.5)

is attained for all x ∈ X , and it also implies that for every J ∈ S, there
exists a policy µ such that TµJ = TJ . This will be shown as part of the
proof of the following proposition.

The compactness condition of Assumption 3.2.1(d) can be verified in
a few interesting cases involving both finite and infinite state and control
spaces:

(1) The case where U is a finite set.

(2) Cases where for each x, H(x, u, J) depends on J only through its
values J(y) for y in a finite set Yx. For an illustration, consider a
mapping like the one of the SSP Example 1.2.6:

H(x, u, J) = g(x, u) +
∑

y∈Yx

pxy(u)J(y).

Then the infimum in Eq. (3.5) is attained if U(x) is compact, g(x, ·)
is lower semicontinuous, and pxy(·) is continuous for each y ∈ Yx,
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since then H(x, ·, J) is lower semicontinuous as a function of u. This
covers important cases of finite-state and countable-state MDP with
compact control spaces (see [BeT91]).

(3) Cases of stochastic optimal control problems such as those of Example
1.2.1, under conditions involving a continuous state space, a compact
constraint set U(x), and a problem structure implying that H(x, ·, J)
is continuous. However, in such cases one must often require that
policies obey additional measurability restrictions, and to this end a
more complex mathematical formulation is needed to address these
restrictions. Such a formulation and corresponding analysis is given
for abstract contractive DP models in Chapter 5; see also [BeS78],
Ch. 6, and [JaC06] for SSP problems. The extension to the semicon-
tractive models of this section, while in principle straightforward, has
not been worked out.

We will show the following proposition, which is the main result of
this section.

Proposition 3.2.1: Let Assumption 3.2.1 hold. Then:

(a) The optimal cost function J* is the unique fixed point of T within
the set S.

(b) We have T kJ → J* for all J ∈ S. Moreover, there exists an
optimal S-regular policy.

(c) A policy µ is optimal if and only if TµJ* = TJ*.

(d) For any J ∈ S, if J ≤ TJ we have J ≤ J*, and if J ≥ TJ we
have J ≥ J*.

In comparing this proposition with Props. 3.1.1-3.1.3 of Section 3.1,
we see that it requires more conditions (cf. Assumption 3.2.1). However,
the two assumptions of Props. 3.1.1-3.1.3 require some prior analysis for
verification. Assumption 3.2.1 provides a reasonably convenient way to
verify these two assumptions in the case where S consists of real-valued
functions, but goes further with additional technical conditions, and in
doing so it leads to stronger conclusions. These are the uniqueness of the
fixed point of T within S (not just within the set {J ∈ S | J ≥ J*}), and
the convergence of the VI sequence {T kJ} starting from any J ∈ S (not
just starting from J ∈ S with J ≥ J*).

The proof of Prop. 3.2.1 is long and is developed through several
lemmas. These lemmas will also help to illuminate the implications of the
various parts of Assumption 3.2.1, and to identify the roles of these parts in
the major steps of the proof. The lemmas culminate with showing that the
function Ĵ of Assumption 3.2.1(b) is the unique fixed point of T , and that
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any policy µ satisfying TµĴ = T Ĵ is optimal within the set of S-regular

policies. Then the proposition is proved by first showing that T kJ → Ĵ
for all J ∈ S, and then by using this to prove that Ĵ = J* and that there
exists an optimal S-regular policy.

Lemma 3.2.1: Let Assumption 3.2.1(d) hold. For every J ∈ S, there
exists a policy µ such that TµJ = TJ .

Proof: Since H is in general extended real-valued, for a given x ∈ X , we
need to consider separately the cases (TJ)(x) < ∞ and (TJ)(x) = ∞.
Consider any x ∈ X with (TJ)(x) < ∞, and let

{

λm(x)
}

be a decreasing
scalar sequence with

λm(x) ↓ inf
u∈U(x)

H(x, u, J).

The set
Um(x) =

{

u ∈ U(x) | H(x, u, J) ≤ λm(x)
}

,

is nonempty, and by Assumption 3.2.1(d), it is compact. The set of points
attaining the infimum of H(x, u, J) over U(x) is ∩∞

m=0Um(x), and is there-
fore nonempty. Let ux be a point in this intersection. Then we have

H(x, ux, J) ≤ λm(x), ∀ m ≥ 0. (3.6)

Consider the policy µ formed by the point ux, for x with (TJ)(x) < ∞,
and by any point ux ∈ U(x) for x with (TJ)(x) = ∞. Taking the limit
in Eq. (3.6) as m → ∞ shows that µ satisfies (TµJ)(x) = (TJ)(x) for
x with (TJ)(x) < ∞. For x with (TJ)(x) = ∞, we also have trivially
(TµJ)(x) = (TJ)(x), so TµJ = TJ . Q.E.D.

Lemma 3.2.2: Let Assumption 3.2.1(c) hold. A policy µ that satis-
fies TµJ ≤ J for some J ∈ S is S-regular.

Proof: By the monotonicity of Tµ, we have T k
µJ ≤ J , for all k ≥ 1. Thus

lim supk→∞ T k
µJ ≤ J and since J is real-valued, from Assumption 3.2.1(c)

it follows that µ cannot be S-irregular. Q.E.D.

Lemma 3.2.3: Let Assumption 3.2.1(a),(d),(e) hold. Then if J ′ ∈ S
and T kJ ′ ↑ J for some J ∈ S, we have J = TJ .
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Proof: We first note that since J ′ ∈ S and J ∈ S, from Assumption
3.2.1(a) it follows that T kJ ′ ∈ S. We fix x ∈ X , and consider the sets

Uk(x) =
{

u ∈ U(x) | H(x, u, T kJ ′) ≤ J(x)
}

, k = 0, 1, . . . , (3.7)

which are compact by Assumption 3.2.1(d). Let uk ∈ U(x) be such that

H(x, uk, T kJ ′) = inf
u∈U(x)

H(x, u, T kJ ′) = (T k+1J ′)(x) ≤ J(x);

(such a point exists by Lemma 3.2.1). Then uk ∈ Uk(x).
For every k, consider the sequence {ui}∞i=k. Since T

kJ ′ ↑ J, it follows
using the monotonicity of H , that for all i ≥ k,

H(x, ui, T kJ ′) ≤ H(x, ui, T iJ ′) ≤ J(x).

Therefore from the definition (3.7), we have {ui}∞i=k ⊂ Uk(x). Since Uk(x)
is compact, all the limit points of {ui}∞i=k belong to Uk(x) and at least one
limit point exists. Hence the same is true for the limit points of the whole
sequence {ui}. Thus if ũ is a limit point of {ui}, we have

ũ ∈ ∩∞
k=0Uk(x).

By Eq. (3.7), this implies that

H
(

x, ũ, T kJ ′
)

≤ J(x), k = 0, 1, . . . .

Taking the limit as k → ∞ and using Assumption 3.2.1(e), we obtain

(TJ)(x) ≤ H(x, ũ, J) ≤ J(x).

Thus, since x was chosen arbitrarily within X , we have TJ ≤ J . To show
the reverse inequality, we write T kJ ′ ≤ J , apply T to this inequality, and
take the limit as k → ∞, so that J = limk→∞ T k+1J ′ ≤ TJ . It follows
that J = TJ . Q.E.D.

Lemma 3.2.4: Let Assumption 3.2.1(b),(c),(d) hold. Then:

(a) The function Ĵ of Assumption 3.2.1(b),

Ĵ(x) = inf
µ:S-regular

Jµ(x), x ∈ X,

is the unique fixed point of T within S.

(b) Every policy µ satisfying TµĴ = T Ĵ is optimal within the set

of S-regular policies, i.e., µ is S-regular and Jµ = Ĵ . Moreover,
there exists at least one such policy.
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Proof: For all S-regular policies µ, we have Jµ ≥ Ĵ , and by applying Tµ

to this relation, we have

Jµ = TµJµ ≥ TµĴ ≥ T Ĵ,

where the first equality follows from the S-regularity of µ. Taking the
infimum in this relation over all S-regular policies µ and using the definition
of Ĵ , we obtain Ĵ ≥ T Ĵ .

To prove the reverse relation, let µ be any policy such that TµĴ = T Ĵ

(there exists one by Lemma 3.2.1). In view of the inequality Ĵ ≥ T Ĵ just
shown, we have Ĵ ≥ TµĴ , so µ is S-regular by Lemma 3.2.2. Thus we have,
using also the monotonicity of Tµ,

Ĵ ≥ T Ĵ = TµĴ ≥ lim
k→∞

T k
µ Ĵ = Jµ.

From the definition of Ĵ , it follows that equality holds throughout in the
preceding relation, so µ is optimal within the class of S-regular policies,
and Ĵ is a fixed point of T .

Next we show that Ĵ is the unique fixed point of T within S. Indeed
if J ′ ∈ S is another fixed point, we choose an S-regular µ such that Jµ = Ĵ
(there exists one by the preceding argument), and we have

J ′ = TJ ′ ≤ TµJ ′ ≤ lim
k→∞

T k
µJ ′ = Jµ = Ĵ .

Let µ′ be such that J ′ = TJ ′ = Tµ′J ′ (cf. Lemma 3.2.1). Then µ′ is
S-regular (cf. Lemma 3.2.2), and we have

J ′ = lim
k→∞

T k
µ′J ′ = Jµ′ .

Combining the preceding two relations, we have J ′ = Jµ′ ≤ Ĵ , which in

view of the definition of Ĵ , implies that J ′ = Ĵ . Q.E.D.

Proof of Prop. 3.2.1: (a), (b) We will first prove that T kJ → Ĵ for all
J ∈ S, and we will use this to prove that Ĵ = J* and that there exists
an optimal S-regular policy. Thus both parts (a) and (b) will be shown
simultaneously.

We fix J ∈ S, and choose J ′ ∈ S such that J ′ ≤ J and J ′ ≤ TJ ′

[cf. Assumption 3.2.1(f)]. By the monotonicity of T , we have T kJ ′ ↑ J̃ for
some J̃ ∈ E(X). Let µ be an S-regular policy such that Jµ = Ĵ [cf. Lemma
3.2.4(b)]. Then we have, using again the monotonicity of T ,

J̃ = lim
k→∞

T kJ ′ ≤ lim sup
k→∞

T kJ ≤ lim
k→∞

T k
µJ = Jµ = Ĵ . (3.8)

Since J ′ and Ĵ belong to S, and J ′ ≤ J̃ ≤ Ĵ , Assumption 3.2.1(a) implies
that J̃ ∈ S. From Lemma 3.2.3, it then follows that J̃ = T J̃ . Since Ĵ
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is the unique fixed point of T within S [cf. Lemma 3.2.4(a)], it follows
that J̃ = Ĵ . Thus equality holds throughout in Eq. (3.8), proving that
limk→∞ T kJ = Ĵ .

There remains to show that Ĵ = J* and that there exists an optimal
S-regular policy. To this end, we note that by the monotonicity Assumption
3.1.1, for any policy π = {µ0, µ1, . . .}, we have

Tµ0 · · ·Tµk−1
J̄ ≥ T kJ̄ .

Taking the limit of both sides as k → ∞, we obtain

Jπ ≥ lim
k→∞

T kJ̄ = Ĵ ,

where the equality follows since T kJ → Ĵ for all J ∈ S (as shown earlier),
and J̄ ∈ S [cf. Assumption 3.2.1(a)]. Thus for all π ∈ Π, Jπ ≥ Ĵ = Jµ,
implying that the policy µ that is optimal within the class of S-regular
policies is optimal over all policies, and that Ĵ = J*.

(c) If µ is optimal, then Jµ = J* ∈ S, so by Assumption 3.2.1(c), µ is S-
regular and therefore TµJµ = Jµ. Hence, TµJ* = TµJµ = Jµ = J* = TJ*.
Conversely, if J* = TJ* = TµJ*, µ is S-regular (cf. Lemma 3.2.2), so
J* = limk→∞ T k

µJ* = Jµ. Therefore, µ is optimal.

(d) If J ∈ S and J ≤ TJ , by repeatedly applying T to both sides and using
the monotonicity of T , we obtain J ≤ T kJ for all k. Taking the limit as
k → ∞ and using the fact T kJ → J* [cf. part (b)], we obtain J ≤ J*. The
proof that J ≥ TJ implies J ≥ J* is similar. Q.E.D.

3.2.2 The Case Where Irregular Policies Have Finite Cost -
Perturbations

In this section, we consider problems where some S-irregular policies may
have finite cost for all states, so Prop. 3.2.1 does not apply. An example is
SSP problems where all one-stage costs are nonpositive and J*(x) > −∞
for all x. The following example describes a classical problem of this type.

Example 3.2.1 (Search Problem)

Consider a situation where the objective is to move within a finite set of
states searching for a state to stop while minimizing the expected cost. We
formulate this as a DP problem with finite state space X, and two controls
at each x ∈ X: stop, which yields an immediate cost s(x), and continue, in
which case we move to a state f(x,w) at cost g(x,w), where w is a random
variable with given distribution that may depend on x. The mapping H has
the form

H(x, u, J) =

{

s(x) if u = stop,

E
{

g(x,w) + J
(

f(x,w)
)}

if u = continue,
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and the function J̄ is identically 0.
Letting S = R(X), we note that the policy µ that stops nowhere is S-

irregular, since Tµ cannot have a unique fixed point (adding any unit function
multiple to J adds to TµJ the same multiple). This policy may violate As-
sumption 3.2.1(c) of the preceding subsection, because its cost may be finite
for all states. A special case where this occurs is when g(x,w) ≡ 0 for all x.
Then the cost function of µ is identically 0.

Note that case (a) of the three-node shortest path problem given in
Section 3.1.2, which involves a zero length cycle, is a special case of the
search problem just described. Therefore, the anomalous behavior we saw
there (nonconvergence of VI starting from J0 < J∗ and oscillation of PI) may
also arise in the context of the present example.

In this section, we show that the results of Props. 3.1.1-3.1.3 (unique-
ness of fixed point of T within the set {J ∈ S | J ≥ J*} and convergence of
VI starting from within that set) hold, provided that there exists an optimal
S-regular policy, and the assumptions are suitably modified by introduc-
ing a positive perturbation into Tµ. The idea is that with a perturbation,
the cost functions of S-irregular policies may increase disproportionately
relative to the cost functions of the S-regular policies, thereby making the
problem more amenable to analysis.

In particular, for each δ ≥ 0 and policy µ, we consider the mappings
Tµ,δ and Tδ given by

(Tµ,δJ)(x) = H
(

x, µ(x), J
)

+ δ, x ∈ X, TδJ = inf
µ∈M

Tµ,δJ.

We define the corresponding cost functions of policies π = {µ0, µ1, . . .} ∈ Π
and µ ∈ M, and optimal cost function J*

δ by

Jπ,δ(x) = lim sup
k→∞

Tµ0,δ · · ·Tµk,δ
J̄ , Jµ,δ(x) = lim sup

k→∞

T k
µ,δJ̄ ,

J*
δ = inf

π∈Π
Jπ,δ.

We refer to the problem associated with the mappings Tµ,δ as the δ-
perturbed problem.

The following proposition shows that if the δ-perturbed problem is
“well-behaved” with respect to the S-regular policies, then its cost function
J*
δ can be used to approximate the optimal cost function over the S-regular

policies only.

Proposition 3.2.2: Given a set S ⊂ E(X), assume that:

(1) For every δ > 0, there exists an optimal S-regular policy for the
δ-perturbed problem.

(2) If µ is an S-regular policy, we have

Jµ,δ ≤ Jµ + wµ(δ), ∀ δ > 0,
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where wµ is a function such that limδ↓0 wµ(δ) = 0.

Then
lim
δ↓0

J*
δ = inf

µ: S-regular
Jµ,

where J*
δ is the optimal cost function of the δ-perturbed problem.

Proof: For all δ > 0, we have by using condition (2),

inf
µ: S-regular

Jµ ≤ Jµ∗
δ
≤ Jµ∗

δ
,δ = J*

δ ≤ Jµ′,δ ≤ Jµ′ + wµ′(δ), ∀ µ′ : S-regular,

where µ∗
δ is an optimal S-regular policy of the δ-perturbed problem [cf.

condition (1)]. By taking the limit as δ ↓ 0 and then the infimum over all
µ′ that are S-regular, it follows that

inf
µ:S-regular

Jµ ≤ lim
δ↓0

J*
δ ≤ inf

µ: S-regular
Jµ.

Q.E.D.

The preceding proposition does not require that existence of an opti-
mal S-regular policy for the original problem. It applies even if the optimal
cost function J* does not belong to S and we may have limδ↓0 J*

δ (x) >
J*(x) for some x ∈ X . This is illustrated by the following example.

Example 3.2.2

Consider the case of a single state where J̄ = 0, and there are two policies,
µ∗ and µ, with

Tµ∗J = J, TµJ = 1, ∀ J ∈ ℜ.

Here we have Jµ∗ = 0 and Jµ = 1. Moreover, it can be verified that for any set
S ⊂ ℜ that contains the point 1, the optimal policy µ∗ is not S-regular while
the suboptimal policy µ is S-regular. For δ > 0, the δ-perturbed problem has
optimal cost J∗

δ = 1 + δ, the unique solution of the Bellman equation

J = TδJ = min{1, J}+ δ,

and its optimal policy is the S-regular policy µ (see Fig. 3.2.1). We also have

lim
δ↓0

J
∗
δ = Jµ = 1 > 0 = J

∗
,

consistent with Prop. 3.2.2.
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J TJ

1 1 +

1 1 +

1 1 + δ

1 Jµ,δ = 1+δ J

TδJ TJ

J TJ

J TJ J̄ = Jµ∗ = 0

Figure 3.2.1: The mapping T and its perturbed version Tδ in Example 3.2.2.

A simple way to guarantee that limδ↓0 J*
δ = J* is to assume that

there exists an optimal S-regular policy for the unperturbed problem. This
will also guarantee Bellman’s equation J* = TJ*, under some additional
conditions which are collected in the following assumption.

Assumption 3.2.2: We are given a set S ⊂ E(X) such that the
following hold:

(a) There exists an S-regular policy µ∗ that is optimal, i.e., Jµ∗ = J∗,
and satisfies

Jµ∗,δ ≤ Jµ∗ + w(δ), ∀ δ > 0,

where w is a function such that limδ↓0 w(δ) = 0.

(b) The optimal cost function J*
δ of the δ-perturbed problem belongs

to S and satisfies the Bellman equation J*
δ = TδJ*

δ for each δ > 0.

(c) For each sequence {Jm} ⊂ S with Jm ↓ J for some J ≥ J*, we
have

TµJm ↓ TµJ, ∀ µ ∈ M.

Under the preceding assumption we will show that J* = TJ*. This
will allow us to use Prop. 3.1.2 and yield the results of Props. 3.1.1-3.1.3.

Proposition 3.2.3: Let Assumption 3.2.2 hold. Then:

(a) The optimal cost function J* is the unique fixed point of T within
the set {J ∈ S | J ≥ J*}.
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(b) We have T kJ → J* for every J ∈ S with J ≥ J*.

(c) An S-regular policy µ that satisfies TµJ* = TJ* is optimal. Con-
versely if µ is an S-regular optimal policy, it satisfies TµJ* =
TJ*.

Proof: By the monotonicity of Tµ, we clearly have J* ≤ J*
δ , so using

Assumption 3.2.2(a), we obtain for all δ > 0,

J* ≤ J*
δ ≤ Jµ∗,δ ≤ Jµ∗ + w(δ) = J* + w(δ),

and limδ↓0 J*
δ = J*. The Bellman equation J*

δ = TδJ*
δ is written as

J*
δ = inf

µ∈M
TµJ*

δ + δ e. (3.9)

From this relation, the fact limδ↓0 J*
δ = J* just shown, and Assumption

3.2.2(c), we have

J* = lim
δ↓0

inf
µ∈M

TµJ*
δ ≤ inf

µ∈M
lim
δ↓0

TµJ*
δ = inf

µ∈M
TµJ* = TJ*. (3.10)

We also have

TJ* ≤ TJ*
δ = inf

µ∈M
TµJ*

δ = J*
δ − δ e, ∀ δ > 0,

where the last equality follows from Eq. (3.9). By taking the limit as
δ ↓ 0, we obtain TJ* ≤ J*, which combined with Eq. (3.10), shows that
J* = TJ*. Thus the assumptions of Prop. 3.1.2 are satisfied and the
conclusions follow from this proposition. Q.E.D.

The following example illustrates the preceding line of analysis. For
another application, see Section 4.5.3 on exponential cost models.

Example 3.2.3 (Search Problem Continued)

Consider the search problem of Example 3.2.1, assuming that the expected
costs for not stopping are nonnegative, E

{

g(x,w)
}

≥ 0 for all x. Then for
all policies µ that don’t stop with probability 1 starting from state x we have
Jµ,δ(x) = ∞ for all δ > 0, since an expected cost of at least δ is incurred at
each transition in the δ-perturbed problem.

If the costs s(x) for stopping are nonpositive for all x, then from known
results on SSP problems (cf. Example 1.2.6 and [BeT91]), it follows that there
exists an optimal R(X)-regular policy, which stops with probability 1 starting
from every state. In this case, Assumption 3.2.2 holds, and Prop. 3.2.3 applies.
If some stopping costs s(x) are positive, it may happen that each optimal
policy is S-irregular, and there is no optimal R(X)-regular policy. In this
case, however, there is an optimal R(X)-regular policy for the δ-perturbed

problem, for all δ > 0, and Prop. 3.2.2 applies. Thus limδ↓0 J
*
δ yields the best

that can be achieved when restricted to policies that stop with probability 1.
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An Alternative Line of Analysis

A weakness of Assumption 3.2.2(b) is that it requires the verification of
Bellman’s equation J*

δ = TδJ*
δ for the δ-perturbed problem. An alternative

line of analysis makes instead regularity assumptions on the policies of this
problem, and is based on the following definition.

Definition 3.2.1: Given a set S ⊂ E(X) and a scalar δ ≥ 0, we say
that a stationary policy µ is δ-S-regular if Jµ,δ is the unique fixed
point of Tµ,δ within S, and

T k
µ,δJ → Jµ,δ, ∀ J ∈ S.

A policy that is not δ-S-regular is called δ-S-irregular .

Thus µ is δ-S-regular if and only if it is 0-S-regular for the δ-perturbed
problem. Our earlier notions of S-regular and S-irregular policies are equiv-
alent to 0-S-regular and 0-S-irregular policies, respectively. To illustrate,
consider the case where Tµ is a weighted sup-norm contraction (e.g., a
proper µ in a finite-state SSP problem). Then assuming also that Tµ,δ

maps B(X) into B(X) [e.g., when e ∈ B(X)], Tµ,δ is a weighted sup-norm
contraction for all δ ≥ 0, µ is δ-B(X)-regular for all δ ≥ 0.

Note that δ-S-regularity for all δ > 0 does not imply 0-S-regularity,
nor does it imply that Jµ,δ ↓ Jµ as δ ↓ 0. This can be illustrated by a
single-state example, a variation of Example 3.2.2, where J̄ = 0, and there
is a single policy µ with TµJ = min{1, J}. Here for S = ℜ, µ is δ-S-regular
for all δ > 0, but it is not 0-S-regular, and in fact it can be verified that
Jµ = 0 while Jµ,δ = 1 + δ (cf. Fig. 3.2.1).

We introduce the following assumption, whose conditions resemble
the ones of Prop. 3.1.3. In particular, parts (a)-(c) of the assumption are
patterned after conditions (1) and (2) of Prop. 3.1.3.

Assumption 3.2.3: We are given a set S ⊂ R(X) that contains the
function J̄ , and is such that the following hold:

(a) There exists an S-regular policy µ∗ that is optimal, i.e., Jµ∗ = J∗.

(b) Each S-regular policy is δ-S-regular for every δ > 0. Moreover,
if µ is a δ-S-irregular policy for a given δ > 0, then there is at
least one state x ∈ X such that

lim sup
k→∞

(T k
µ,δJµ∗,δ)(x) = ∞, (3.11)
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where µ∗ is the optimal S-regular policy of (a).

(c) For each δ > 0, there exists a policy µ such that TµJµ∗,δ =
TJµ∗,δ, where µ∗ is the optimal S-regular policy of (a).

(d) For each sequence {Jµk,δk
}, where for all k, µk is S-regular, δk >

0, δk ↓ 0, and Jµk,δk
↓ J ,

lim
m→∞

H(x, u, Jµk ,δk
) = H (x, u, J) , ∀ x ∈ X, u ∈ U(x).

Note that similar to Assumption 3.2.1, the preceding assumption re-
quires that S is a set of real-valued functions; this allows us to take advan-
tage of Eq. (3.11). We first show a preliminary lemma.

Lemma 3.2.5: Let Assumption 3.2.3 hold. Then:

(a) If 0 ≤ δ ≤ δ′, then for all policies µ, k ≥ 1, and functions
J, J ′ ∈ E(X), with J ≤ J ′, we have T k

µ,δJ ≤ T k
µ,δ′

J ′.

(b) A policy that is δ-S-irregular for some δ > 0 is δ′-S-irregular for
all δ′ ∈ (δ,∞).

(c) A policy that is δ-S-regular for some δ > 0 is δ′-S-regular for all
δ′ ∈ (0, δ).

(d) For every S-regular policy µ and sequence {δk} with δk > 0 for
all k, δk ↓ 0, we have Jµ,δk ↓ Jµ.

(e) Let µ be a policy that satisfies TµJµ,δ = TJµ,δ, where δ > 0 and
µ is a δ-S-regular policy. Then

Tµ,δJµ,δ = TµJµ,δ + δ e = TJµ,δ + δ e ≤ TµJµ,δ + δ e = Jµ,δ.

Proof: (a) For k = 1, we have Tµ,δJ ≤ Tµ,δ′J ≤ Tµ,δ′J ′. The proof is
completed by induction.

(b) Assume, to arrive at a contradiction, that µ is δ-S-irregular for some
δ > 0, and is δ′-S-regular for some δ′ > δ. Then, if µ∗ is the optimal
S-regular policy of Assumption 3.2.3(a), by the δ-S-irregularity of µ and
Assumption 3.2.3(b), there exists x ∈ X such that

Jµ,δ′(x) = lim
k→∞

(T k
µ,δ′

Jµ∗,δ)(x) ≥ lim sup
k→∞

(T k
µ,δJµ∗,δ)(x) = ∞,

where the first equality holds because µ is δ′-S-regular and Jµ∗,δ ∈ S, and
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the inequality uses part (a). This contradicts the δ′-S-regularity of µ, which
implies that Jµ,δ′ belongs to S and is therefore real-valued.

(c) Follows from part (b).

(d) Since µ is an S-regular policy, it is δ-S-regular for all δ > 0 by Assump-
tion 3.2.3(b). The sequence {Jµ,δk} is monotonically nonincreasing, belongs
to S, and is bounded below by Jµ, so Jµ,δk ↓ J+ for some J+ ≥ Jµ ≥ J*.
Hence, by Assumption 3.2.3(d), we have J+ ∈ S and for all x ∈ X ,

H
(

x, µ(x), J+
)

= lim
k→∞

H
(

x, µ(x), Jµ,δk

)

= lim
k→∞

(

Jµ,δk
(x)− δk

)

= J
+(x),

where the second equality follows from the definition of Jµ,δk as the fixed
point of Tµ,δk

. Thus J+ satisfies TµJ+ = J+ and is therefore equal to Jµ,
since µ is S-regular. Hence Jµ,δk ↓ Jµ.

(e) In the desired relation, repeated below for convenience,

Tµ,δJµ,δ = TµJµ,δ + δ e = TJµ,δ + δ e ≤ TµJµ,δ + δ e = Jµ,δ,

the inequality is evident, the second equality is an assumption, and the
other equalities follow from the definitions of Tµ,δ and Tµ,δ, and the fixed
point property Jµ,δ = Tµ,δJµ,δ. Q.E.D.

We have the following proposition, whose conclusions are identical to
the ones of the earlier Prop. 3.2.3.

Proposition 3.2.4: Under Assumption 3.2.3 the conclusions of Prop.
3.2.3 hold.

Proof: We will show that J* = TJ*. The proof will then follow from Prop.
3.1.2. Let µ∗ be the optimal S-regular policy of Assumption 3.2.3(a), and
let {δk} be a positive sequence such that δk ↓ 0. Using Assumption 3.2.3(c),
we may choose a policy µk such that

TµkJµ∗,δk
= TJµ∗,δk

.

Using Lemma 3.2.5(e) with µ = µ∗, which applies since µ∗ is δ-S-regular
for all δ > 0 [cf. Assumption 3.2.3(b)], we have for all m ≥ 1,

Tm
µk,δk

Jµ∗,δk
≤ Tµk,δk

Jµ∗,δk
≤ TJµ∗,δk

+ δk e ≤ Jµ∗,δk
,

where the first inequality follows from the monotonicity of Tµk,δk
. Taking

the limit as m → ∞, and using Assumption 3.2.3(b) [cf. Eq. (3.11)], it
follows that µk is δk-S-regular, and we have

Jµ∗ ≤ Jµk ≤ Jµk ,δk
≤ TJµ∗,δk

+ δk e ≤ Jµ∗,δk
, (3.12)
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where the second inequality follows from Lemma 3.2.5(a). Since Jµ∗,δk
↓

Jµ∗ [cf. Lemma 3.2.5(d)], by taking the limit as k → ∞ in Eq. (3.12), we
obtain

Jµ∗ = lim
k→∞

TJµ∗,δk
. (3.13)

We thus obtain

(Tµ∗Jµ∗)(x) = Jµ∗(x)

= lim
k→∞

inf
u∈U(x)

H(x, u, Jµ∗,δk
)

≤ inf
u∈U(x)

lim
k→∞

H(x, u, Jµ∗,δk
)

= inf
u∈U(x)

H(x, u, Jµ∗)

= (TJµ∗)(x)

≤ (Tµ∗Jµ∗)(x),

where the first equality is the Bellman equation for the S-regular pol-
icy µ∗, the second equality is Eq. (3.13), and the third equality follows
from Assumption 3.2.3(d) and the fact Jµk ,δk

↓ Jµ∗ . Thus equality holds
throughout above and we obtain Jµ∗ = TJµ∗ . Since µ∗ is optimal, we
obtain J* = TJ*, and the conclusions follow from Prop. 3.1.2. Q.E.D.

To see what may happen if there is no optimal S-regular policy, even
though there exists a δ-S-regular policy for all δ > 0, consider the example
given following the Definition 3.2.1 of a δ-S-regular policy. Here there is a
single state, J̄ = 0, and there is a single policy µ with

TµJ = TJ = min{1, J},

and Jµ = J* = 0. Then for S = ℜ, µ is S-irregular, and Assumptions
3.2.3(a) and 3.2.3(b) are violated. As a result, contrary to the assertion of
Prop. 3.2.4, the set of fixed points of T is {J | −∞ < J ≤ 1} and contains
J < J* = 0, while VI starting from every J 6= 0 does not converge to J∗.

The following example addresses a class of SSP problems where the
perturbation approach applies and yields interesting results.

Example 3.2.4 (Stochastic Shortest Problems with an
Optimal Proper Policy)

Consider the finite-spaces SSP problem of Example 1.2.6, and let S = R(X).
We assume that there exists an optimal proper policy, and we will show that
Assumption 3.2.3 is satisfied, so that Prop. 3.2.4 applies.

Indeed, according to known results for SSP problems discussed in Ex-
ample 1.2.6 (e.g., [BeT96], Prop. 2.2, [Ber12a], Prop. 3.3.1), a policy µ is
proper (stops with probability 1 starting from any x ∈ X) if and only if Tµ

is a contraction with respect to a weighted sup-norm. It follows that for a
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proper policy µ, Tµ,δ is a weighted sup-norm contraction for all δ ≥ 0, so µ

is δ-S-regular and Jµ,δ ∈ R(X). Moreover for an improper policy µ we have
Jµ(x) > −∞ for all x (since there exists an optimal policy that is proper and
hence its cost function is real-valued). Thus if δ > 0, we obtain

lim sup
k→∞

(T k
µ,δJ)(x) = ∞, ∀ J ∈ R(X);

this is because an additional cost of δ is incurred each time that the policy
does not stop. Since for the optimal proper policy µ∗, we have Jµ∗,δ ∈
R(X), Assumption 3.2.3(b) holds. In addition the conditions (c) and (d) of
Assumption 3.2.3 are clearly satisfied.

Thus if there exists an optimal proper policy, Assumption 3.2.3 holds,
and the results of Prop. 3.2.4 apply. In particular, J∗ is the unique fixed point
of T within the set

{

J ∈ R(X) | J ≥ J∗
}

, and the VI algorithm converges to
J∗ starting from any function J within this set. These results also apply to
the search problem of Example 3.2.1, assuming that there exists an optimal
policy that stops with probability 1.

We finally note that similar to the search problem, if we just assume that
there exists at least one proper policy, while J∗(x) > −∞ for all x ∈ X, Prop.
3.2.2 applies and shows that limδ↓0 J

∗
δ yields the best that can be achieved

when restricted to proper policies only.

The results for the preceding SSP example cannot be improved, in
the sense that uniqueness of the fixed point of T within R(X) cannot be
shown. This can be verified using case (a) of the shortest path example of
Section 3.1.2. Moreover, as shown by the same example, the PI algorithm
may oscillate between an optimal and a nonoptimal policy. This motivates
modifications of the PI framework, which we will discuss in Section 3.3.3.

3.3 ALGORITHMS

In this section, we will discuss VI and PI algorithms for finding J* and
an optimal policy under the assumptions of the preceding section. We
have already shown that the VI algorithm converges to the optimal cost
function J* for any starting function J ∈ S in the case of Assumption 3.2.1
(cf. Prop. 3.2.1), and also for any starting function J ∈ S with J ≥ J* in
the case of Assumption 3.2.3 (cf. Prop. 3.2.4). We will discuss asynchronous
versions of VI under these two assumptions in Section 3.3.1, and will prove
satisfactory convergence properties.

In Section 3.3.2, we will show that there is a valid version of the PI
algorithm, which starting from an S-regular µ0, generates a sequence of
S-regular policies {µk} such that Jµk → J*. We will briefly discuss this
algorithm, and then focus on a modified version of PI that is unaffected
by the presence of S-irregular policies. This algorithm is similar to the PI
algorithm of Section 2.6.3, and can also be implemented in a distributed
asynchronous environment. Finally, we will discuss in Section 3.3.3 a ver-
sion of PI that is based on the perturbation approach of Section 3.2.2.
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3.3.1 Asynchronous Value Iteration

Let us consider the model of Section 2.6.1 for asynchronous distributed
computation of the fixed point of a mapping T , and the asynchronous
distributed VI method described there. The model involves a partition ofX
into disjoint nonempty subsets X1, . . . , Xm, and a corresponding partition
of J as J = (J1, . . . , Jm), where Jℓ is the restriction of J on the set Xℓ.

We consider a network ofm processors, each updating asynchronously
corresponding components of J . In particular, we assume that Jℓ is up-
dated only by processor ℓ, and only for times t in a selected subset Rℓ of it-
erations. Moreover, as in Section 2.6.1, processor ℓ uses components Jj sup-
plied by other processors j 6= ℓ with communication “delays” t−τℓj(t) ≥ 0:

J t+1
ℓ (x) =

{

T
(

J
τℓ1(t)
1 , . . . , J

τℓm(t)
m

)

(x) if t ∈ Rℓ, x ∈ Xℓ,

J t
ℓ (x) if t /∈ Rℓ, x ∈ Xℓ.

(3.14)

Under the assumptions of Section 3.2, we can prove convergence by
using the asynchronous convergence theorem (cf. Prop. 2.6.1), and the fact
that T is monotone and has J* as its unique fixed point within the ap-
propriate set. We will consider two types of conditions, corresponding
to the Assumptions of Sections 3.2.1 and 3.2.2, respectively. In the first
case, we will choose S = B(X), while in the second case we will choose
S =

{

J ∈ B(X) | J ≥ J*
}

. The reason for using B(X) instead of R(X)
is that it may make it easier for policies to be S-regular, since we allow an
infinite state space (cf. the remarks following Assumption 3.2.1).

Consider first the case where Assumption 3.2.1 holds with S = B(X),
and assume that the continuous updating and information renewal Assump-
tion 2.6.1. Assume further that we have two functions V , V ∈ S such that

V ≤ TV ≤ TV ≤ V , (3.15)

so that, by Prop. 3.2.1, T kV ≤ J* ≤ T kV for all k, and

T kV ↑ J*, T kV ↓ J*.

Then we can show asynchronous convergence of the VI algorithm (3.14),
starting from any function J0 with V ≤ J0 ≤ V .

Indeed, let us apply Prop. 2.6.1 with the sets S(k) given by

S(k) =
{

J ∈ S | T kV ≤ J ≤ T kV
}

, k = 0, 1, . . . .

The sets S(k) satisfy S(k+ 1) ⊂ S(k) in view of Eq. (3.15) and the mono-
tonicity of T . Using Prop. 3.2.1, we also see that S(k) satisfy the syn-
chronous convergence and box conditions of Prop. 2.6.1. Thus, together
with Assumption 2.6.1, all the conditions of Prop. 2.6.1 are satisfied, and
the convergence of the algorithm follows starting from any J0 ∈ S(0).
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Consider next the case where Assumption 3.2.3 holds with S =
{

J ∈

B(X) | J ≥ J*
}

. In this case we use the sets S(k) given by

S(k) =
{

J ∈ S | J* ≤ J ≤ T kV
}

, k = 0, 1, . . . ,

where V is a function in S with J* ≤ TV ≤ V . These sets satisfy the
synchronous convergence and box conditions of Prop. 2.6.1, and we can
similarly show asynchronous convergence to J* of the generated sequence
{J t} starting from any J0 ∈ S(0).

3.3.2 Asynchronous Policy Iteration

In this section, we focus on PI methods, under Assumption 3.2.1 and some
additional assumptions to be introduced shortly. We first discuss briefly
a natural form of PI algorithm, which generates S-regular policies exclu-
sively. Let µ0 be an initial S-regular policy [there exists one by Assumption
3.2.1(b)]. At the typical iteration k, we have an S-regular policy µk, and
we compute a policy µk+1 such that Tµk+1Jµk = TJµk (this is possible by
Lemma 3.2.1). Then µk+1 is S-regular, by Lemma 3.2.2, and we have

Jµk = TµkJµk ≥ TJµk = Tµk+1Jµk ≥ lim
m→∞

T k
µk+1Jµk = Jµk+1 . (3.16)

We can thus construct a sequence of S-regular policies {µk} and a cor-
responding nonincreasing sequence {Jµk}. Under some additional mild
conditions it is then possible to show that Jµk ↓ J* (see Exercise 3.6).

Unfortunately, when there are S-irregular policies, the preceding PI
algorithm is somewhat limited, because an initial S-regular policy may not
be known, and also because when asynchronous versions of the algorithm
are implemented, it is difficult to guarantee that all the generated policies
are S-regular. In what follows in this section, we will discuss a PI algorithm
that works in the presence of S-irregular policies, and can operate in a
distributed asynchronous environment. We will need a few assumptions
that are in addition to the ones of Section 3.2.1. For analytical simplicity,
we include in these assumptions finiteness of the state and control spaces.

Assumption 3.3.1: The set S is equal to R(X), and Assumption
3.2.1 holds with this choice of S. Furthermore, the following hold:

(a) H(x, u, J) is real-valued for all J ∈ S, x ∈ X , and u ∈ U(x).

(b) X and U are finite sets.

(c) For all scalars r > 0 and functions J ∈ S, we have

H(x, u, J + r e) ≤ H(x, u, J) + r e, ∀ x ∈ X, u ∈ U(x),
(3.17)

where e is the unit function.
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In view of the requirement that S = R(X) with X being a finite set,
part (c) of the preceding assumption is a nonexpansiveness condition for
H(x, u, ·), which also implies continuity of H(x, u, ·).

Similar to Section 2.6.3, we introduce a new mapping that is parametri-
zed by µ and can be shown to have a common fixed point for all µ. It
operates on a pair (V,Q) where:

• V is a function with a component V (x) for each x.

• Q is a function with a component Q(x, u) for each pair (x, u) with
u ∈ U(x).

The mapping produces a pair

(

MFµ(V,Q), Fµ(V,Q)
)

,

where

• Fµ(V,Q) is a function with a component Fµ(V,Q)(x, u) for each (x, u),
defined by

Fµ(V,Q)(x, u) = H
(

x, u,min{V,Qµ}
)

, (3.18)

where for any Q and µ, we denote by Qµ the function of x defined by

Qµ(x) = Q
(

x, µ(x)
)

, x ∈ X,

and for any two functions V1 and V2, we denote by min{V1, V2} the
function of x given by

min{V1, V2}(x) = min
{

V1(x), V2(x)
}

, x ∈ X.

• MFµ(V,Q) is a function with a component
(

MFµ(V,Q)
)

(x) for each
x, where M is the operator of pointwise minimization over u:

(MQ)(x) = min
u∈U(x)

Q(x, u),

so that
(

MFµ(V,Q)
)

(x) = min
u∈U(x)

Fµ(V,Q)(x, u).

We consider an algorithm that is similar to the asynchronous PI al-
gorithm given in Section 2.6.3 for contractive models. It applies asyn-
chronously the mapping MFµ(V,Q) for local policy improvement and up-
date of V and µ, and the mapping Fµ(V,Q) for local policy evaluation
and update of Q. The algorithm involves a partition of the state space
into sets X1, . . . , Xm, and assignment of each subset Xℓ to a processor
ℓ ∈ {1, . . . ,m}. For each ℓ, there are two infinite disjoint subsets of times
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Rℓ,Rℓ ⊂ {0, 1, . . .}, corresponding to policy improvement and policy eval-
uation iterations, respectively. At time t, each processor ℓ operates on
V t(x), Qt(x, u), and µt(x), only for x in its “local” state space Xℓ. In
particular, at each time t, each processor ℓ does one of the following:

(a) Local policy improvement : If t ∈ Rℓ, processor ℓ sets for all x ∈ Xℓ,

V t+1(x) = min
u∈U(x)

H
(

x, u,min{V t, Qt
µt}

)

=
(

MFµt(V t, Qt)
)

(x),

(3.19)
sets µt+1(x) to a u that attains the minimum, and leaves Q un-
changed, i.e., Qt+1(x, u) = Qt(x, u) for all x ∈ Xℓ and u ∈ U(x).

(b) Local policy evaluation: If t ∈ Rℓ, processor ℓ sets for all x ∈ Xℓ and
u ∈ U(x),

Qt+1(x, u) = H
(

x, u,min{V t, Qt
µt}

)

= Fµt(V t, Qt)(x, u), (3.20)

and leaves V and µ unchanged, i.e., V t+1(x) = V t(x) and µt+1(x) =
µt(x) for all x ∈ Xℓ.

(c) No local change: If t /∈ Rℓ ∪ Rℓ, processor ℓ leaves Q, V , and µ
unchanged, i.e., Qt+1(x, u) = Qt(x, u) for all x ∈ Xℓ and u ∈ U(x),
V t+1(x) = V t(x), and µt+1(x) = µt(x) for all x ∈ Xℓ.

Under Assumption 3.3.1, we will show convergence of the algorithm
to (J*, Q*), where Q* is defined by

Q*(x, u) = H(x, u, J*), x ∈ X, u ∈ U(x). (3.21)

To this end, we first show that Q* is the unique fixed point of the mapping
F defined by s

(FQ)(x, u) = H
(

x, u,MQ
)

, x ∈ X, u ∈ U(x).

Indeed, under our assumption, Prop. 3.2.1 applies, so J* is the unique
fixed point of T , and we have MQ* = TJ* = J*. Thus, from the definition
(3.21), Q* is a fixed point of F . To show uniqueness of the fixed point
of F , note that if Q is a fixed point of F , then Q(x, u) = H(x, u,MQ)
for all x ∈ X , u ∈ U(x), and by minimization over u ∈ U(x), we have
MQ = T (MQ). Hence MQ is equal to the unique fixed point J* of T , so
that the equation Q = FQ yields Q(x, u) = H(x, u,MQ) = H(x, u, J*),
for all (x, u). From the definition (3.21) of Q*, it then follows that Q = Q∗.

We introduce the µ-dependent mapping

Lµ(V,Q) =
(

MQ,Fµ(V,Q)
)

, (3.22)

where Fµ(V,Q) is given by Eq. (3.18). Note that the policy evaluation part
of the algorithm [cf. Eq. (3.20)] amounts to applying the second component
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of Lµ, while the policy improvement part of the algorithm [cf. Eq. (3.19)]
amounts to applying the second component of Lµ, and then applying the
first component of Lµ. The following proposition shows that (J*, Q*) is
the common fixed point of the mappings Lµ, for all µ.

Proposition 3.3.1: Let Assumption 3.3.1 hold. Then for all µ ∈ M,
the mapping Lµ of Eq. (3.22) is monotone and has (J*, Q*) as its
unique fixed point.

Proof: Monotonicity of Lµ follows from the monotonicity of the operators
M and Fµ. To show that Lµ has (J*, Q*) as its unique fixed point, we first
note that J* = MQ* and Q* = FQ*, as shown earlier. Then, using also
the definition of Fµ, we have

J* = MQ*, Q* = FQ* = Fµ(J*, Q*),

which shows that (J*, Q*) is a fixed point of Lµ. To show uniqueness, let
(V ,Q) be a fixed point of Lµ, i.e., V = MQ and Q = Fµ(V ,Q). Then

Q = Fµ(V ,Q) = FQ,

where the last equality follows from V = MQ. Thus Q is a fixed point of
F , and since Q* is the unique fixed point of F , as shown earlier, we have
Q = Q*. It follows that V = MQ* = J*, so (J*, Q*) is the unique fixed
point of Lµ. Q.E.D.

The uniform fixed point property of Lµ just shown is, however, in-
sufficient for the convergence proof of the asynchronous algorithm, in the
absence of a contraction property. For this reason, we introduce two map-
pings L and L that are associated with the mappings Lµ and satisfy

L(V,Q) ≤ Lµ(V,Q) ≤ L(V,Q), ∀ µ ∈ M. (3.23)

These are the mappings defined by

L(V,Q) =

(

MQ, min
µ∈M

Fµ(V,Q)

)

, L(V,Q) =

(

MQ,max
µ∈M

Fµ(V,Q)

)

,

(3.24)
where the min and max over µ are attained in view of the finiteness of M
[cf. Assumption 3.3.1(b)]. We will show that L and L also have (J*, Q*) as
their unique fixed point. Note that there exists µ̄ that attains the maximum
in Eq. (3.24), uniformly for all V and (x, u), namely a policy µ̄ for which

Q
(

x, µ̄(x)
)

= max
u∈U(x)

Q(x, u), ∀ x ∈ X,
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[cf. Eq. (3.18)]. Similarly, there exists µ that attains the minimum in Eq.
(3.24), uniformly for all V and (x, u). Thus for any given (V,Q), we have

L(V,Q) = Lµ(V,Q), L(V,Q) = Lµ̄(V,Q), (3.25)

where µ and µ̄ are some policies. The following proposition shows that
(J*, Q*), the common fixed point of the mappings Lµ, for all µ, is also the
unique fixed point of L and L.

Proposition 3.3.2: Let Assumption 3.3.1 hold. Then the mappings
L and L of Eq. (3.24) are monotone, and have (J*, Q*) as their unique
fixed point.

Proof: Monotonicity is clear from the monotonicity of the operators M
and Fµ. Since (J*, Q*) is the common fixed point of Lµ for all µ (cf. Prop.
3.3.1), and there exists µ such that L(J*, Q*) = Lµ(J*, Q*) [cf. Eq. (3.25)],

it follows that (J*, Q*) is a fixed point of L. To show uniqueness, suppose
that (V,Q) is a fixed point, so (V,Q) = L(V,Q). Then by Eq. (3.25), we
have

(V,Q) = L(V,Q) = Lµ(V,Q)

for some µ ∈ M. Since by Prop. 3.3.1, (J*, Q*) is the only fixed point of
Lµ, it follows that (V,Q) = (J*, Q*), so (J*, Q*) is the only fixed point of

L. Similarly, we show that (J*, Q*) is the unique fixed point of L. Q.E.D.

We are now ready to construct a sequence of sets needed to apply
Prop. 2.6.1 and prove convergence. For a scalar c ≥ 0, we denote

J−
c = J* − c e, Q−

c = Q* − c eQ,

J+
c = J* + c e, Q+

c = Q* + c eQ,

with e and eQ are the unit functions in the spaces of J and Q, respectively.

Proposition 3.3.3: Let Assumption 3.3.1 hold. Then for all c > 0,

Lk(J−
c , Q−

c ) ↑ (J*, Q*), L
k
(J+

c , Q+
c ) ↓ (J*, Q*), (3.26)

where Lk (or L
k
) denotes the k-fold composition of L (or L, respec-

tively).
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Proof: For any µ, using the assumption (3.17), we have for all (x, u),

Fµ(J
+
c , Q+

c )(x, u) = H
(

x, u,min{J+
c , Q+

c }
)

= H
(

x, u,min{J*, Q*}+ c e
)

≤ H
(

x, u,min{J*, Q*}
)

+ c

= Q*(x, u) + c

= Q+
c (x, u),

and similarly
Q−

c (x, u) ≤ Fµ(J
−
c , Q−

c )(x, u).

We also have MQ+
c = J+

c and MQ−
c = J−

c . From these relations, the
definition of Lµ, and the fact Lµ(J*, Q*) = (J*, Q*) (cf. Prop. 3.3.1),

(J−
c , Q−

c ) ≤ Lµ(J
−
c , Q−

c ) ≤ (J*, Q*) ≤ Lµ(J
+
c , Q+

c ) ≤ (J+
c , Q+

c ).

Using this relation and Eqs. (3.23) and (3.25), we obtain

(J−
c , Q−

c ) ≤ L(J−
c , Q−

c ) ≤ (J*, Q*) ≤ L(J+
c , Q+

c ) ≤ (J+
c , Q+

c ). (3.27)

Denote for k = 0, 1, . . . ,

(V k, Qk) = L
k
(J+

c , Q+
c ), (V k, Qk

) = Lk(J−
c , Q−

c ).

From the monotonicity of L and L and Eq. (3.27), we have that (V k, Qk)
converges monotonically from above to some (V ,Q) ≥ (J*, Q*), while
(V k, Qk

) converges monotonically from below to some (V ,Q) ≤ (J*, Q*).
By taking the limit in the equation

(V k+1, Qk+1) = L(V k, Qk),

and using the continuity property of L, implied by Eq. (3.17) and the
finiteness of the control constraint set, it follows that (V ,Q) = L(V ,Q),
so (V ,Q) must be equal to (J*, Q*), the unique fixed point of L. Thus,

L
k
(J+

c , Q+
c ) ↓ (J*, Q*). Similarly, Lk(J−

c , Q−
c ) ↑ (J*, Q*). Q.E.D.

To show asynchronous convergence of the algorithm (3.19)-(3.20),
consider the sets

S(k) =
{

(V,Q) | Lk(J−
c , Q−

c ) ≤ (V,Q) ≤ L
k
(J+

c , Q+
c )

}

, k = 0, 1, . . . ,

whose intersection is (J*, Q*) [cf. Eq. (3.26)]. By Prop. 3.3.3 and Eq. (3.23),
this set sequence together with the mappings Lµ satisfy the synchronous
convergence and box conditions of the asynchronous convergence theorem
of Prop. 2.6.1 (more precisely, its time-varying version of Exercise 2.2). This
proves the convergence of the algorithm (3.19)-(3.20) for starting points
(V,Q) ∈ S(0). Since c can be chosen arbitrarily large, it follows that the
algorithm is convergent from an arbitrary starting point.

Finally, let us note some variations of the asynchronous PI algorithm.
One such variation is to allow “communication delays” t− τℓj(t). Another
variation, for the case where we want to calculate just J*, is to use a
reduced space implementation similar to the one discussed in Section 2.6.3.
There is also a variant with interpolation, cf. Section 2.6.3.
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3.3.3 Policy Iteration With Perturbations

Let us now consider PI for problems where there exists an optimal S-
regular policy, but S-irregular policies may have real-valued cost functions,
and the perturbation approach of Section 3.2.2 applies. We will develop an
algorithm that generates a sequence of policies {µk} such that Jµk → J*,
under the following assumption, which among others, is satisfied in the SSP
problem of Example 3.2.4.

Assumption 3.3.2: Assumption 3.2.3 holds, and in addition:

(a) For every δ > 0 and δ-S-regular policy µ, there exists a policy µ
such that TµJµ,δ = TJµ,δ.

(b) For every δ > 0 and δ-S-irregular policy µ, and for every J ∈ S,
there exists at least one state x ∈ X such that

lim sup
k→∞

(T k
µ,δJ)(x) = ∞.

We generate a sequence {µk} with a perturbed version of PI as follows.
Let {δk} be a positive sequence with δk ↓ 0, and let µ0 be any δ0-S-regular
policy. At the typical iteration k, we have a δk-S-regular policy µk, and we
generate µk+1 according to

Tµk+1Jµk,δk
= TJµk,δk

. (3.28)

Such µk+1 exists by Assumption 3.3.2(a), and we claim that µk+1 is δk+1-
S-regular. To see this, note that from Lemma 3.2.5(e), we have

Tµk+1,δk
Jµk,δk

= TJµk,δk
+ δk e ≤ TµkJµk,δk

+ δk e = Jµk,δk
,

so that

Tm
µk+1,δk

Jµk ,δk
≤ Tµk+1,δk

Jµk,δk
= TJµk,δk

+ δk e ≤ Jµk ,δk
, ∀ m ≥ 1.

(3.29)
Since Jµk,δk

∈ R(X), from Assumption 3.3.2(b) it follows that µk+1 is δk-
S-regular, and hence also δk+1-S-regular, by Lemma 3.2.5(c). Thus the se-
quence {µk} generated by the perturbed PI algorithm (3.28) is well-defined
and consists of δk-S-regular policies. We have the following proposition.

Proposition 3.3.4: Let Assumption 3.3.2 hold. Then the sequence
{Jµk} generated by the algorithm (3.28) satisfies Jµk → J*.
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Proof: Using Eq. (3.29), we have

Jµk+1,δk+1
≤ Jµk+1,δk

= lim
m→∞

Tm
µk+1,δk

Jµk ,δk
≤ TJµk,δk

+ δk e ≤ Jµk,δk
,

where the equality holds because µk+1 is δk-S-regular, as shown earlier.
Taking the limit as k → ∞, and noting that Jµk+1,δk+1

≥ J*, we see that

Jµk ,δk
↓ J+ for some J+ ≥ J*, and we obtain

J* ≤ J+ = lim
k→∞

TJµk,δk
. (3.30)

We also have

inf
u∈U(x)

H(x, u, J+) ≤ lim
k→∞

inf
u∈U(x)

H(x, u, Jµk,δk
)

≤ inf
u∈U(x)

lim
k→∞

H(x, u, Jµk,δk
)

= inf
u∈U(x)

H(x, u, J+),

where the equality follows from Assumption 3.2.3(d). It follows that equal-
ity holds throughout above, so that

lim
k→∞

TJµk,δk
= TJ+. (3.31)

Combining Eqs. (3.30) and (3.31), we obtain J* ≤ J+ = TJ+. Since by
Prop. 3.2.4, J* is the unique fixed point of T within {J ∈ S | J ≥ J*}, it
follows that J+ = J*. Thus Jµk ,δk

↓ J*, and since Jµk,δk
≥ Jµk ≥ J*, we

have Jµk → J*. Q.E.D.

Note that when X and U are finite sets, as in the SSP problem of
Example 3.2.4, Prop. 3.3.4 implies that the generated policies µk will be
optimal for all k sufficiently large. The reason is that in this case, the set
of policies is finite and there exists a sufficiently small ǫ > 0, such that for
all nonoptimal µ there is some state x such that Jµ(x) ≥ J*(x) + ǫ.

In the absence of finiteness of X and U , Prop. 3.3.4 guarantees the
monotonic pointwise convergence of {Jµk,δk

} to J* (see the preceding proof)

and the (possibly nonmonotonic) pointwise convergence of {Jµk} to J*.
This convergence behavior should be contrasted with the behavior of PI
without perturbations, which may lead to oscillation between two nonop-
timal policies, as noted earlier.

3.4 NOTES, SOURCES, AND EXERCISES

The semicontractive model framework of this chapter and the material of
Section 3.1 are new. The framework is inspired from the analysis of the SSP
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problem of Example 1.2.6, which involves finite state and control spaces,
as well as a termination state. In the absence of a termination state, a
key idea has been to generalize the notion of a proper policy from one that
leads to termination with probability 1, to one that is S-regular for an
appropriate set of functions S.

The line of proof of Prop. 3.1.1 dates back to an analysis of SSP
problems with finite state and control spaces, given in the author’s [Ber87],
Section 6.4, which assumes existence of an optimal proper policy and non-
negativity of the one-stage cost. Proposition 3.2.1 is patterned after a
similar result in Bertsekas and Tsitsiklis [BeT91] for SSP problems with fi-
nite state space and compact control constraint sets. The proof given there
contains an intricate part (Lemma 3 of [BeT91]) to show a lower bound on
the cost functions of proper policies, which is assumed here in part (b) of
the semicontraction Assumption 3.2.1.

The perturbation analysis of Section 3.2.2, including the PI algorithm
of Section 3.3.3, are new and are based on unpublished collaboration of the
author with H. Yu. The results for SSP problems using this analysis (cf.
Prop. 3.2.4) strengthen the results of [Ber87] (Section 6.4) and [BeT91]
(Prop. 3), in that the one-stage cost need not be assumed nonnegative.
We have given two different perturbation approaches in Section 3.2.2. The
first approach places assumptions on the optimal cost function J*

δ of the
δ-perturbed problem (cf. Prop. 3.2.2 and Assumption 3.2.2), while the sec-
ond places assumptions on policies (cf. Assumption 3.2.3) and separates
them into δ-S-regular and δ-S-irregular. The first approach is simpler an-
alytically, and at least in part, does not require existence of an S-regular
policy (cf. Prop. 3.2.2). The second approach allows the development of
a perturbed PI algorithm and the corresponding analysis of Section 3.3.3
(under the extra conditions of Assumption 3.3.2).

The asynchronous PI algorithm of Section 3.3.2 is essentially the same
as one of the optimistic PI algorithms of Yu and Bertsekas [YuB11a] for
the SSP problem of Example 1.2.6. This paper also analyzed asynchronous
stochastic iterative versions of the algorithms, and proved convergence re-
sults that parallel those for classical Q-learning for SSP, given in Tsitsiklis
[Tsi94] and Yu and Bertsekas [YuB11b]. We follow the line of analysis of
that paper. A related paper, which deals with a slightly different asyn-
chronous PI algorithm in an abstract setting and without a contraction
structure, is Bertsekas and Yu [BeY10b].

By allowing an infinite state space, the analysis of the present chapter
applies among others to SSP problems with a countable state space. Such
problems often arise in queueing control problems where the termination
state corresponds to an empty queue. The problem then is to empty the
system with minimum expected cost. Generalized forms of SSP problems,
which involve an infinite (uncountable) number of states, in addition to the
termination state, are analyzed by Pliska [Pli78], Hernandez-Lerma et al.
[HCP99], and James and Collins [JaC06]. The latter paper allows improper
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policies, assumes that J* is bounded below, and generalizes the results of
[BeT91] to infinite (Borel) state spaces, using a similar line of proof.

An important case of an SSP problem where the state space is infinite
arises under imperfect state information. There the problem is converted
to a perfect state information problem whose states are the belief states,
i.e., the posterior probability distributions of the original state given the
observations thus far. Patek [Pat07] proves results that are similar to the
ones for SSP problems with perfect state information. These results can
also be derived from the analysis of this chapter. In particular, the critical
condition that the cost functions of proper policies are bounded below by
some real-valued function [cf. Assumption 3.2.1(b)] is proved as Lemma
5 in [Pat07], using the fact that the cost functions of the proper policies
are bounded below by the optimal cost function of a corresponding perfect
state information problem.

E X E R C I S E S

3.1 (Blackmailer’s Dilemma)

Consider an SSP problem where there is only one state x = 1, in addition to the
termination state 0. At state 1, we can choose a control u with 0 < u ≤ 1, while
incurring a cost −u; we then move to state 0 with probability u2, and stay in state
1 with probability 1−u2. We may regard u as a demand made by a blackmailer,
and state 1 as the situation where the victim complies. State 0 is the situation
where the victim (permanently) refuses to yield to the blackmailer’s demand.
The problem then can be seen as one whereby the blackmailer tries to maximize
his total gain by balancing his desire for increased demands with keeping his
victim compliant. In terms of abstract DP we have

X = {1}, U(1) = (0, 1], J̄(1) = 0, H(1, u, J) = −u+ (1− u
2)J(1).

(a) Verify that Tµ is a sup-norm contraction for each µ. In addition, show that
Jµ(1) = − 1

µ(1)
, so that J∗(1) = −∞, that there is no optimal policy, and

that T has no fixed points within ℜ. Which parts of Assumption 3.2.1 with
S = ℜ are violated?

(b) Consider a variant of the problem where at state 1, we terminate at no cost
with probability u, and stay in state 1 at a cost −u with probability 1− u.
Here we have

H(1, u, J) = (1− u)(−u) + (1− u)J(1).

Verify that J∗(1) = −1, that there is no optimal policy, and that T has
multiple fixed points within ℜ. Which parts of Assumption 3.2.1 with
S = ℜ are violated?
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(c) Repeat part (b) for the case where at state 1, we may also choose u = 0
at a cost c. Show that the policy µ that chooses µ(1) = 0 is ℜ-irregular.
What are the optimal policies and the fixed points of T in the three cases
where c > 0, c = 0, and c < 0. Which parts of Assumption 3.2.1 with
S = ℜ are violated in each of these three cases?

3.2 (Equivalent Semicontractive Conditions)

Let S be a given subset of E(X). Show that the assumptions of Prop. 3.1.1 hold
if and only if J∗ ∈ S, TJ∗ ≤ J∗, and there exists an S-regular policy µ such that
TµJ

∗ = TJ∗.

3.3

Consider the three-node shortest path example of Section 3.1.2. Try to apply
Prop. 3.1.1 with S = [−∞,∞)× [−∞,∞). What conclusions can you obtain for
various values of a and b, and how do they compare with those for S = ℜ2?

3.4 (Changing J̄)

Let the assumptions of Prop. 3.1.1 hold, and let J∗ be the optimal cost function.
Suppose that J̄ is changed to some function J ∈ S.

(a) Show that following the change, J∗ continues to be the optimal cost func-
tion over just the S-regular policies.

(b) Consider the three-node shortest path problem of Section 3.1.2 for the case
where a = 0, b < 0. Change J̄ from J̄ = 0 to J̄ = r e where r ∈ ℜ.
Verify the result of part (a) for this example. For which values of r is the
ℜ2-irregular policy optimal?

3.5 (Alternative Semicontractive Conditions)

The purpose of this exercise and the next one is to provide conditions that imply
the results of Prop. 3.1.1. Let S be a given subset of E(X). Assume that:

(1) There exists an optimal S-regular policy.

(2) For every S-irregular policy µ, we have TµJ
∗ ≥ J∗.

Then the assumptions and the conclusions of Prop. 3.1.1 hold.

3.6 (Convergence of PI)

Let Assumption 3.2.1 hold, and let {µk} be the sequence generated by the PI
algorithm described at the start of Section 3.3.2 [cf. Eq. (3.16)]. Let also J∞ =
limk→∞ Jµk , and assume that H(x, u, Jµk ) → H(x, u, J∞) for all x ∈ X and
u ∈ U(x). Show that J∞ = J∗.


