Chapter 1 Basic concepts
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1.1 Graph and simple graph

Examples of graph are not difficult to find. For one, a road map can be interpreted as a
graph, the vertex are the junctions and the edges are the stretch of road from one junctions to
another, similarly an electrical circuit may give us a graph in which the vertex are the terminals
and the edges are the wires. This graph is different from the lines and triangles, cycles in the
geometry, and the painting either. Here, the graph we talk about is present a kind of relation
on a set. For more the exact definition readers may read Discrete Mathematics. It is customary
to represent a graph G by drawing on paper. A graph G is an ordered pair of disjoint sets
(V(@), E(G),%q), here the set V(G), E(G) are the vertex and the edge set, 1 is the incident
functions on V(G) and E(G), that is, if ¢¥g(e) = wv we say e incident with v and v. The
vertices u and v are the end vertices of edge e, in other words, uv is an edge of G, we say u and
v are adjacent. Two edges are adjacent if they have exactly one common end vertex.

We give an example to familiar the reader with the graph and associated terminologies.

G = (V(G), E(G),Y¢q), here V(G) = (v1,v2,v3,v4), E(G) = (e1,€e2,€3,€4,e5) and ¢¢ is
defined as 9g(e1) = v1v2, Ya(e2) = vavs, Yg(e3) = v3vy, Vg (es) = vav1, Ya(es) = vavy, then
this graph is showed in Fig 1.1.

Vy
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V)
Fig 1.1 a simple graph
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2 The Fundamental Theory Of Graphs

If more than one edge incident the same vertex, then we call graph has multi-edges, and
if the end vertices are same of an edge, then we call the edge is a loop. In this book, we only
think about the edges that do not have a direction. If a undirected graph without loops and
multi-edges we call this graph is a simple graph. The number of vertices of a graph G we
denoted as the order of G; the number of edges of a graph G we denoted as the size of G. For
convince, we take n as the order of a graph and m the size of a graph in this book. Usually we
denote n = |V(G)| and m = |E(G)].

Now, we denote several kind of graphs that has very interesting properties:

If a graph of order n without edge we call it an empty graph write as E™.

A graph of order n and size C2 or C(n,2) in some books is called a complete graph. This
graph is denoted by K". In K", every two vertices are adjacent, the graph K' = E' is said
to be trivial graph. A graph G is called a bipartite graph with vertex class Vi, V3, if, and each
edge joins a vertex of Vj to V. K, is a complete bipartite graph on n + m vertices, in fact,
it is a special case of general bipartite graph. The set of vertices adjacent to a vertex u € G is
denoted by I'(u). The degree of a vertex u is denoted as d(u) = |I'(u)|. The minimum degree
of a graph is denoted by §(G) and § for short; the mazimum degree by A(G) and A for short,
if A =§ =k we call this graph is k regular.

Example

In fig 1.1 minimal degree § = 2, maximal degree A = 3.

We say that H = (V', E’) is a subgraph of G = (V,E) if V' C V and E' C E. In this
case, we write H C G. If H contains all edges of G that join two vertices in V'’ then H is
said to be the subgraph induced by V' and is denoted by G[V']. If H contains all the vertices
that incident with the edges E’ then we say H is a sub-graph induced by E’ and is denoted by
G[E']. f V! =V then H is said to be a spanning subgraph of G. To example, we give several
subgraphs.

Example

A subgraph, an induced subgraph by edges, an induced subgraph by vertex and a spanning
subgraph. Vi = {v1,v9,v4}, E1 = {e1,e3,¢e5} in graph 1.1 H, G[V'1], G[E1] are Fig 1.2, Fig 1.3
and Fig 1.4 respectively.

Vy
Vy

2 V) V3 V2

Fig 1.2 sui)graph of G Fig 1.3 vertex induced Fig 1.4 edge induced
graph G[V1] graph G[F1]
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In order to give readers a wide bases, we give more terminologies, we call a subgraph A is
a cliqgue if A C V(@) and every pairs of vertices are adjacent. In the sequent sections, we will
know it is a complete graph. On the other hand, if non vertices are adjacent in A we call A is an
independent set. We denote ¢(G) is the clique number of a graph witch is the maximal number
of vertices of all cliques of G, and a(G) is the maximal independent number of a graph.

Similar to the clique and independent set on vertex, we can extent these definitions to the
edge set, we call complete matching and an edge covering. We will study these in chapter 6 for

more information.

1.2 Graph operations

Sometimes, we study the properties of a graph by studying another graph get by trans-
forming the original graph. We will study the spectrum of graphs in chapter 1. calculate the
number of its spanning tree of a graph in chapter 3, calculate the matching number of graphs,
study the relation between the matching polynomial of a graph and the characteristic polynomial
of its path tree and study the coloring number of a graph in chapter 6. Here, we first present
some operations on graphs.

1. deleting an edge or a vertex from G, denoted as G-e or G-v.

2. subdivision an edge or split a vertex.

3. put two graphs together, write as G; U Gs.

4. contracting graph by an edge, delete an edge and put two end vertex together all other

vertex and edges keep same.

5. complete product(some books call it joint)G; 7 G2 of G and G is the graph obtained

from G1 U G3 by joining every vertex of G; with every vertex of Ga.

In the following chapter, we may study the different polynomials defined on these trans-
formations. In this section, we study the properties on following transformations.

Definition 1.1  The complement of G, denoted by G¢, is the graph with V(G) = V(G°)
such that two vertices are adjacent in G¢ if and only if their are not adjacent in G.

Obviously, |V(G)| = |[V(G®)| and |E(G)| + |E(G°)| = C(n,2) = n(n —1)/2. We will have

more interesting results in the later chapters about the complement graph and with itself.
u

Fig 1.5 graph G and the graph delete e and split from u
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Example

We give another example for subdivision and contract by an edge of graph.

@ Q@ o —=°
l | RN -
1 1 RN P
~ 7
77777777777777 Rt | =
e | | [N
| I , AN
! ! 4 \
1 ! 4 \
I l 4 \
I I ’ N
4 \
& S —————0

Fig 1.7 the graph obtained by subdivision e and split from e

Example

We construct a new graph from the original one by a simple transformations. Besides
these, we also have several special operations these are very important in studying the graph
properties. The line graph L(G) of an undirected graph G is another graph L(G) that represents
the adjacency between edges of G. The line graph is also sometimes called the edge graph, the
adjoint graph, the interchange graph, or the derived graph of G. In Spectra of Graphs, readers
may find more graph transformations like the direct sun, the complete product, the product and
the total graph, etc.

Definition 1.2  Given a graph G, its line graph L(G) is a graph such that each vertex
of L(G) represents an edge of G; and two vertices of L(G) are adjacent if and only if their
corresponding edges share a common endpoint (“are adjacent” ) in G.

We give an example for general simple graph G and its line graph L(G). We can easily
find an edge of G correspond to an vertex of its line graph L(G). In the graph above edge e
correspond to the vertex v of L(G). The degree of v of L(G) satisfies below formula

d(v) = d(v;) +d(v;) — 2,e = (uv)

Obviously, the edge set of L(G) is the edge set of G. The size of G became the order of its line
graph. The size of L(G) satisfy following equation.

B(L(G) = Y d(w)
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We may give this formula and let the readers proof this as an exercise in the end of this

chapter.
BL(@) = 5 Y dle) = (3 d? —2m)
i=1 i=1

In Fig 1.8, the number of edges of the line graph is 14. If G is k-regular, then L(G) is 2k —2
regular. Besides this, the maximal matching, the independent vertex set, the color number, the
connectivity and the character polynomial of G and L(G) are studied by many mathematicians.
In section 1.6, we will prove that the eigenvalues of a line graph L(G) are not less than —2.
Here, we cite several results about the characteristic polynomials of regular graphs. In the next
section, we will give the proof of this theorem.

Theorem 1.1([36]) If G is a k-reqular graph with n vertices and m edges, P(G, \) is the

characteristic polynomial of its adjacent matrix, then
P(L(G), ) = (A +2)""p(G, A — k +2)

It is interesting that the number of triangles in graph G and its line graph L(G) has
below relationship. Let us denote the triangle number of G and L(G) as A(G) and A(L(G)),

respectively, then
n

A(L(G)) = A(G) + ) C(di, 3)
i=1

where d; is the degree of vertex v; in G.

We give an example of this formula here.

A semi-regular bipartite graph is a bipartite graph, Let V1, V3 be two parts of V(G), d(v) = s
if v € Vi; d(v) =t if v € V3, then Shu jinlong has following theorem:

Theorem 1.2([37]) L(G) is a connected regular graph if and only if G is a connected
graph or semi-reqular graph.

Let G157 G2 (the complete product) denote the joint of G; and Ga obtained by adding all
possible edges uv,u € G; and v € Gs.

’ N
s - ~_N

v /- ~\

Fig 1.8 The number of triangles in G and its line graph

Theorem 1.3([38]) Let G1 and G are ki-regular graph and ko-regular graph,

respectively, and k1 — ko = n1 — ng, where ny and ng are the order of G1 and Gs, respectively,
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then the quai-Laplacian  polynomial of Gy V Go is L((G1 VvV G2),z) =

(l‘ —ny—ng — k1 — k‘g)(ng —ny — x—|—2k1)(n1 — N9 — T+ 2]4;2)
({E — kl — kQ — 2)(“2 —x+ 2]62)(”1 —x+ 2k2)
The matching polynomial and characteristic polynomial is connected by the graph and its

L(Gl,x - ng)L(Gg,x - Tl1).

path tree.(see chapter 6) Here, we only give the definition and several simple results.
Definition 1.3  The path tree T(G,u) of G take vertex u as its root, if :
1. V(T(G,w))=all the paths start from u include u itself;
2. E(T(G,u))=(P;, P;) if one path is contained in the other mazimally.

We give an example in Fig 1.9. Obviously, a path tree of P, is P,, Zhang hailiang in

[39] gave the path tree of several type of graph and studied the relation of the largest zero of

matching polynomial. In [4] and in [21], Ma haicheng proved that the largest zero of a graph’s

matching polynomial equals the largest zero of characteristic polynomial of its path tree. Zhang
hailiang gave following properties of several path tree of certain graphs.

" \\ // e lz Uy U, Z

N s
N7

U

u, u,

Fig 1.9 A simple graph and its path tree

Theorem 1.4 1. The path tree of Cy, is Pop_1;

2. The path tree of Q(s,t) is Ts—1 s—1.4—1, 07 Ts—_24—1 s41—1 0r T; 1—1,s—1,4—1,j, wherei+j =
s—1.

Let the n vertices of the given graph G be wvg,v1,...,v,. The Mycielski graph of G
contains G itself as an isomorphic subgraph, together with n 4+ 1 additional vertices: a vertex
u; corresponding to each vertex v; of G, and another vertex w. Each vertex u; is connected by
an edge to w, so that these vertices form a subgraph in the form of a star K;,. In addition,

for each edge v;v; of G, the Mycielski graph includes two edges, u;v; and v;u;.

Thus, if G has n vertices and m edges, My(G) has 2n + 1 vertices and 3m + n edges.
Mycielski’s construction is applied to a 5-vertex cycle we get a graph which is called the Grotzsch
graph. this graph has 11 vertices and 20 edges. The Grotzsch graph is the smallest triangle-free
4-chromatic graph (Chv 4 tal 1974). Zhang hai liang in [18] studied the matching polynomial
and matching equivalent graphs of this graph.
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1.3 Isomorphism

Two graph are isomorphic if there is a correspondence between their vertex sets that
preserves adjacency. Thus G = (V, E) is isomorphic to G' = (V', E’), we denoted by G = G’,
or simply G = G’. If there is a bijection § : V. — V' and ¢ : E(G) — E(G’) such that
e (e) = uv if and only if Y (p(e)) = O(u)f(v), clearly isomorphic graphs has the same order
and size, usually we do not distinguish between isomorphic graphs, unless we consider graphs
with a distinguished or labeled set of vertices.

Definition 1.4 A graph is said to be self-complementary if G = G°.

We have below properties about self-complement graphs.

Theorem 1.5 A graph is self-complementary then v = 0, lmod(4).

Fig 1.10 gives two isomorphic graph.

Fig 1.10 two isomorphic graph

1.4 Incident and adjacent matrix

A graph can be represent as a matrix in the computer science. This section we will give
matrix theory used in graph theory and build a strong connection between matrix and a graph,
first, we start this section with define the adjacency matrix of a graph:

Definition 1.5 The adjacency matriz A(G) of a simple graph G whose vertezx set is
{vi,v2,...,v,}is a square matriz of order n .Whose entry a;; at the place (i,j) is equal to
the numbers of edges incident with the v;,v;, for simple graph that is 0 or 1. We shall write
A = (ai).

Since this matrix is a symmetric matrix, then it has several properties as below:

Theorem 1.6 All eigenvalues of A are real numbers.

Proof. Let X be an eigenvalue of A and P is the associated eigenvectors of A\. X and p be the

conjugate of A\ and p, respectively, then

Ap'.p = p'(Ap) = ' Ap
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since A is symmetric then
(4p)'p = (Ap)'p = Mp'p
Ap'p = Ap'p
and p'p > 0 so \ is real number.

We can also use the associate law of matrix multiplication and the equation
P'Ap=Ap'p

to proof this theorem.

Theorem 1.7  For every symmetric matriz A there is an orthogonal matriz P such that
PYAP = diag(M\, s, ..., A\n), A; are the eigenvalues of A.

Proof. According to theorem 1.5, we know that A has an eigenvector vy, we can as-
sume |lv1]| = 1, and by using the Gram-Schmidt procedure we can find an orthogonal basis
B={v1,va,...,v,} with the eigenvector v; as the first element. Let P; = {vs,v3,...,v,} the
dim(Py) = n —1 Since v; is an eigenvector of T4 with the eigenvalue A1, then AP; also a sym-
metric transformation, by the introduction, (vy,vs,...,v,) is a orthogonal basis for A. Then
by the well know theorem of diagonalizable theorem we finish proving our proof.

The diagonalizable theorem is that if a matriz of order n has n different eigenvectors then
this matriz can be diagonalizable.

Definition 1.6  The incident matriz M(G) of graph G is a n x m matric M = M(G),

its row is the set of vertices and the columns is the set of edges, and whose entries are given by

1, if v; and ej are incident
mi; = .
0, otherwise

Example

The adjacency matrix and the incident matrix of graph 1.1 are

010 1 1000 1
101 1 11001
AlG) 0101 |TEMEO=L 0
1110 001 11

respectively.

Definition 1.7 A matriz is said to be totally unimodular if every minors of order k is
0,-1,1.

In fact, we can easily proofed the incident matrix of a simple graph is totally unimodular

by the induction on the order of the minors of the matrix.
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Theorem 1.8 (Egervary 1931) G is bipartite if and only if M is totally unimodular.

The characteristic polynomial of adjacent matrix of a graph G is defined as the character-
istic polynomial of G, write as p(G, A), sometimes p(G) for short.

Definition 1.8 The spectrum of a graph G is the set of numbers which are eigenvalues
of A(G), together with their multiplicities.If the distinct eigenvalues of A(G) are Ao > M\

> ... > Ap_1,and their multiplicities are m(Xo), m(A1), ..., m(An_1),then we shall write:
A A D Y
SpecG = 0 ! !
m(/\o) m(/\l) e m(/\n_l)

The spectrum of graph 1.1 is

-2 2
Spect(G)—( ) (2) 1)

Suppose that A is an eigenvalue of A, then since A is real and symmetric, it follows that
A is real,and the multiplicity of A as a root of the equation det(Al — A) = 0 is equal to the
dimension of the space of eigenvectors corresponding to A. The main question arising is this:how
much information concerning the structure of G is contained in its spectrum, and how can this
information be retrieved from the spectrum? .

Theorem 1.9 (Hand-shaking lemma) For a graph Zd(vi) = 2¢, where ¢ is size of a
graph. =

Proof. Since every edge gives two degrees to a pair of adjacent vertices of a graph, so the
sum of degree is twice of the numbers of F of G.

Corollary 1.1 (Hand-shaking theorem) In any graph the number of odd degree vertices
18 even.

Proof. Assume Vi, V5 represent the odd degree vertices set and the even degree vertices

set, respectively, by the Theorem 1.9 we have:

> dw)+ Y d(v) =2

veV] veEV,

The right side of this equation is even, as to the left side Z d(v) is even , so Z d(v) must be

veEVa veVy
a even number, but in which every degree of vertex is odd, so in order to grantee the summation

is even, the number of vertices must be a even number.
If V(G) = (v1,v2, . ..,v,), then we say d(vy),d(vs),...,d(vy,) is the degree sequence of G.

This sequence must have below property.
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Theorem 1.10 For positive integer sequence d(vy),d(ve),...,d(v,) is a degree sequence

of a graph if and only szd v;) 18 even.
1=1

Proof. Necessity is obvious by the theorem 1.9. Now we prove the sufficient condition, for
n

Z d(v;) is even by the hand shaking theorem there must have even number of vertex which
i=1
has odd degree, then we can construct a graph as below: For the even degree vertex v; we draw

d(v;)/2 loops on v;; for the odd degree vertices v; we draw (d(v;) —1)/2 loops and connect every
two odd degree vertices with an edge, by the hand shaking theorem there are even number of

odd degree vertices, hence, this graph satisfy the condition.

1.5 The spectrum of graph

In this section, we give an expression of characteristic polynomial. We explain the connec-
tion of graph structure and the coefficients of characteristic polynomial.Some of results come
from the matrix theory directly.

Lemma 1.1([7]) Let A = (a;;) € R"*™, then

k
IAT— Al = 2"+ (1) A"
k=1
where bp(k =1,2,...,n) is the summation over all principle minors of order k, especially,

b =ain +ag + ...+ ann, by = |4]

Proof. Let E = (e1,ea,...,en), A= (a1,aa,...,a,),where e; and «; are the i —th columns

of unity matrix F and matrix A, respectively, then
ML — Al = |(Me1 — a1, Nea — ag, ..., Aep — ay)|
expand this determinant we have:
AL — Al = \"|(e1,ea,...,en)| — A1 Z le1, .. eim1, 0, €1,y en] + ...

FEDIATE ST G, a2 )+ (S1D)7A]

1< <. <ig<n
Where

\(...,ail,...,aik,...)|

represent the two column of adjacent matrix of A, the others are columns of unity matrix I.
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Theorem 1.11([4]) Let p(G,\) = |A\ — A] = N+ a1 A" 1 +...+a, be the characteristic

polynomial of an arbitrary undirected multi-graph G. then

aj = (~1)PW .27 (i=1,2,... n)
veU;

We call following graphs “elementary figure”

1. the graph Ks,or

2. every graph Cy(q > 1) (loops being included with ¢ = 1)
call a “basic figure” U every graph all of whose components are elementary figures; let p(U), c(U)
be the number of components and the number of circuits contained in U, respectively, and U;
denote the set of all basic figures contained in G having exactly i vertices.

This theorem may be given the following form:
Define the “contribution” b of an elementary figure E by b(K2) = —1,b(Cy) = (=1)%1 -2 and

basic figure U by b(U) = H b(E),then (—1)'a; = Z b(U).
EeU UeU;
Proof. Let us first consider the absolute term

an = Pg(0) = (=1)"[A] = (=1)"|a|
According to Leibniz definition of the determinants,
Qp = Z(—l)"+I(P)a1ila2i2 . am'n
P

For the sake of simplicity, let us first assume that there are no multiple arcs so that a;; = 0 or
1 for all 4,k. A term

I(P
SP = (_1)n+ ( )alilagiz .. .am-n

of the sum is different from zero if and only if all of the arcs (1,41),(2,42),...,(n,i,) are

contained in G, P may be represented as a product:

P=@1i)(..)(. ).

of disjoint cycles. Evidently, if Sp # 0, then to each of cycle of P there are corresponds a
cycle in G: thus to P, there corresponds a direct sum of (non-intersecting) cycles containing
all vertices of Gi.e., a linear directed sub-graph L € L,. Conversely: to each linear directed
subgraph L € L,, there corresponds a permutation P and a term Sp = +1, the sign depending

only on the e(L) of even cycles among all cycles of L:

Sp = (-1)"+e®)
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obviously,
n + e(L) = P(L)(mod2)

hence

an = ZSP = Z (*I)P(L)
P

LEL,
Now, the theorem remains valid even if a;; > 1 is allowed:
consider the set of all distinct linear directed subgraph L € L, connecting the n vertices of G
in exactly the way prescribed by the cycle of a fixed permutation P = (141)(...)(...)(...), it is
clear that this set can be obtained by arbitrarily choosing for each k arcs from vertex k to vertex
ix, and doing so in every possible manner; and since for fixed &k there are exactly ay;, possible
choices, the total number of subgraph so obtained equals ai;, ag, - .. Gni, . thus the total con-

tribution of all of these subgraphs to the sum Z (—1)P®) equals to (—1)" 1 P)ay; ag;, . . . ani,
LEL,
summation with respect to all permutations P confirms the validity of in general case.

In order to complete the proof of suppose 1 < i < n, (i fixed). It is well know that
(—1)a; equals to the sum of all principal minors of order i of A. Note that there is a (1 — 1)

correspondence between the set of these minors and the set of induced subgraph of G exactly

n
having i vertices. By applying the result obtained above to each of the (> minors, and
i

summing, the valid of theorem is established.
A spanning element graph of G is an elementary sub-graph which contains all vertices of
G then
det(A) =) (~1)P)2e®)

where the summation over all spanning sub-graphs U of G. This theorem is proofed by Harary
in 1962. Here gives its proof:
consider a term

SgN(T)A1g; A2gs5 - - - » Ongs

in the expansion of Det(A). The term vanishes, if for some i € {1,2,...,n},a;y, = 0; that is
if (vi,vq,) is not an edge of G. In particular, the term vanish if 7 fixes any symbol. Thus the
term corresponding to a permutation 7 is non-zero, then 7 can be expressed uniquely as the
composition of disjoint cycles of length at least two;Each cycle (ij) of length two corresponds
to the factors a;;a;;, and signifies a single edge {v;,v;} in G. Each cycle (pgr...t) of length
greater than two corresponds to the factors apqaqy, . . . arp, and signifies a cycle {v,v, ... v} in
G, consequently each nonvanish term in the determinate expansion gives rise to an elementary
sub-graph U of G,with |V (U)| = |[V(G)|. The sign of a permutation 7 is (—1)"e¢, where N, is
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the number of even cycles in m. If there are ¢; cycles of length [, then the equation Z leg=n

shows that the number N, is the number of odd cycles is congruent to n module 2. Hence,

p(U) =n— (N, + N.) = N.(mod2)

so the sign of 7 is equal to (—1)P(V),

Theorem 1.12  (Biggs Algebraic graph P.53) Suppose the bipartite graph G has an eigen-

value A with multiplicity m(X), then —\ is also an eigenvalue of G with same multiplicity.

Proof. By the theorem 1.11, (—1)%a; = Z(—l)p(U)QC(U). If G is bipartite then G has no

U
odd cycle, and consequently, no elementary subgraph with an odd number vertices. It follows

that the characteristic polynomial of G has the form
p(G,A) = 2" +ax2" "2 + ... = 2°p(2?)

where § = 0 or 1, and P is a polynomial function of z. Thus the eigenvalues which are zeros of
p, have the required property.

Theorem 1.13  For a simple connected graph G, Amaz be the largest eigenvalue of its
characteristic polynomial(spectral radius), then G has no odd cycles if and only if —Apae also
is an eigenvalue of A(G), where A(G) is the adjacent matriz of graph G.

Readers may find the proof of this threom on page 83 Spectra of Graphs Theory and
Application by Dragos M.Cvetkovi¢. etc. Since if G is a bipartite graph if and only if G does
not contain a odd cycle, above theorem gives a very interesting relation between the spectrum
of graphs and its structure.

Corollary 1.2 (Coulson and Rushbrooke 1940) if G is a bi-partite graph Vi, Va, then
;)T BO), if X is an

eigenvector corresponding to the eigenvalue X\, and the X' is obtained from X by changing the

we arrange the vertices that the adjacency matriz A(G) has form A = (

signs of the entries corresponding to vertices in Vo, then X' is an eigenvector corresponding to
the value —\, it follows that the spectrum of bi-partite graph is symmetric with respect to 0.
Corollary 1.3 The coefficients of the characteristic polynomial of a graph G satisfy:
1.¢1=0;
2. —cqy is the number of edges of G;
3. —cg is twice the number of triangles in G;
4. ¢4 = ng — 2np,ng is the number of pairs of disjoint edges in G,and ny is the number of
4—cycles in G.
Proof. For each i € {1,2,...,n}, the number (—1)c; is the sum of those principal minors

of A which have i rows and columns. So we can argue as follows.
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1. Since the diagonal elements of A are all zeros, ¢; = 0.

2. A principal minor with two rows and columns, and which has a non-zero entry, must be

the form there is one such minor for each pair of adjacent vertices of G, and

each has value —1, Hence (—1)?cy = —|E(G)|, giving the result.
3. There are essentially three possibilities for non-trivial principal minors with three rows
0 0 1 0 1 1

0
and columns: [ 1 0 01,1 0 O, |1
0 0 1 1 0 O 1

—_ O =

1
0 | and, of these, the only non-zero one
0

is the last (whose value is 2). This principal minor corresponds to three mutually

adjacent vertices in G, so we have the required description of cs.

4. since the only elementary graph with four vertices are the Cy and the graph only has
two disjoint edges.

If two or more than two graphs has the same spectrum we call these graphs are co-spectrum,

here give two graphs (Fig 1.11 and Fig 1.12) that has same spectrum.

Fig 1.11 one of the two co-spectrum graphs

Fig 1.12 one of the two co-spectrum graph

Both of the above graphs has same characteristic polynomial: p(G,\) = A6 — 7TA* — 4)\3 +
A2 +4X -1

Theorem 1.14 (Rowlinson 1987) Let G be a graph with a vertez v of degree of 1, and
let vy be the verter adjacent to vy, then p(G,\) = Ap(G —v1) — p(G — v1 — v2).
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Corollary 1.4  The characteristic polynomial of Py, is p(P,) = Ap(Pp—1) — p(Pn—_2).

Theorem 1.15 (E.Hellbronner Spectra of graphs p.59) Let G be the graph obtained by
joining the vertex x of the graph G1 to the vertex y of the graph Gy by an edge. Let Gy, GY be
the induced subgraph of G1, Ga obtained by deleting the vertex x,y from G1,Gs, then

p(G,A) = p(G1,\)p(G2, A) — p( l17>‘)p( /25 A)

In order to proof this theorem, we need more results from linear algebra, especially, the
Laplacian expansion theorem of determinant. To extend the results of determinant and its
applications in the graph theory, we may give the two important theorems of determinant they
are the Laplacian theorem is given here and the Cauchy-Binet theorem is given in the next
chapter.

Definition 1.9 A minors M of order k is a sub-determinant obtained by selecting k rows
and k columns of determinant D; and the n — k minors left by delete a k-minors is called a
co-minors, denoted as M'.

Example: Let

1 2 1 4

01 21
D=

0 0 21

0 01 3

If we select the first row and the third row, the first column and the third row, then we

obtain a minor of order 2. That is

M =
0 2
and a co-minor of order 2 is
M =
0 3
Definition 1.10 Ifiq,is,...,9 and ji,jo,-. ., jk are the selected k rows and k columns,

then A = (—1)tattie) TGt tie) M s called a algebra co-minor of order k.
In the above example
A= (_1)1+3+2+4M/ —4

actually, Laplacian expansion theorem is more generalized determinant expand by a row or a
column, now we give the Laplacian theorem.

Theorem 1.16 D = M{A{ + MAs + ...+ M,A,, where M and A are all minors and

|
algebra co-minors of D with order k, s = C(n,k) = ﬁ In other word M is all the
(n —k)!

minors of D with order k.
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In the above example, if we choose the first and the second row we obtain 6 minors,

1 2 1 1 1 4 2 1
Ms = s Mz = s Mg = s Moz =
0 2 0 1 1 2
2 4 1 4
My = s M3y =
1 1 2

associated algebra minors are:

0 0 01
Apg = (—1)1+2+1+2 = 0; Ay = (—1)1+2H1+3 . -0

3

Ay = (—1)tHeri e 0; Agg = (—1)1F2+2+3 O
3 1
1 1 1 2

Ay = (—1)1 22+ — 05 Agy = (—1)1F2H8H —0
0 2 0 1

then
D = Mo Ao + MigAis + MigArg + Moz Aoz + Moy Aoy + M3y Aszy = =7

Proof. By applying the Laplacian development to the characteristic polynomial, we can
easily get the result.

Also, readers may find the proof in book Spectra of Graphs Theory and Application on
page 59.

Corollary 1.5 * Fori=1,2,...,n let G; be the induced subgraph G — v;, then

n

P(GA) =D p(Gy)

i=1

Proof. Row by row differentiation of p(G,\) = |\, — A] yields the results.
Corollary 1.6 If all sub-graph G; are isomorphic with some graph H ,then

p,(G, A) =np(H,N)

1.6 The spectrum of several graphs

The complement G of a graph G is the graph with the same vertex set, with two (distinct)
vertices, adjacent in G if and only if these vertices are non-adjacent in G. The direct sum
G1+ G5 of graph Gy = (Vi, 1) and Gy = (Va, E»), is a graph G = (V, E) for which V = V;U V5,
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(Vi UVa=0), E = E1 U E5. The complete product Gy 7 Go of graphs G and G5 is the graph
obtained from G + Gg, by joining the every vertex of G; with the vertex of Go. The line graph
L(G) of a graph G is constructed by taking the edges of G as vertices of L(G) and joining two
vertices in L(G), whenever the corresponding edges in G have a common vertex.

Theorem 1.17([3]) The incident and adjacent matrizes of G are M and A, and Ap, is
the adjacent matriz of L(QG), then

1. MM = Ap + 2I,,;

2. if G is reqular of degree k, then MM*' = A + kI,,.
In [5], Shu Jinlong developed this theorem to semi-reqular bipartite graph. That is for V. =
Vi + Vo, that d(v) = m|v € V1,d(v) = nlv € V3.

Theorem 1.18 L(G) is k-reqular if and only if G is regular or semi-reqular bipartite
graph.

Lemma 1.2([7]) Let A € C™*" B e C™™, then \"|(Al,, — AB| = A™|\I,, — BA|.

Proof. For
I, —A AB 0\ [0 0 0 0
0o I, B o) \B o B BA

caculate the determinant of this mutiplication of matrix, according to the propertices of deter-

minant we get the result easily.

M, —-M I, M
Lemma 1.3 let U = ; V= , then
0 I, Mt X,

A" det(M,, — MM?) = \"det(AI,,, — M*M)

Proof. Cause det(UV)=det(VU), by calculating the above determinant we easily get the

formula.

By the theorem 1.17 and lemma 1.2. We easily have the following theorem which is given
by Sachs in 1976.

Theorem 1.19(Sachs 1967) If G is a regular graph of degree k with n wvertices and
m = nk/2 edges, then

P(L(G),\) = (A + 2™ "p(G, A +2 — k)

Proof. For p(L(G), ) = det(Al,,, — AL), by the theorem 1.17 and the lemma 1.3, we obtain

this theorem easily.
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We give an example by using this theorem, the line graph of K,, sometimes is called triangle

graph, denoted as Ay. Since the spectrum of K, is

n—1 -1
SpecK, =
( 1 n—1 >

20—4 t—4 -2
SpecA; =
1 t—1 t(t—3)/2

then

Theorem 1.20 If A is an eigenvalue of L(G), then X\ > —2.

Proof. For any vector z, the inner product ||Mz||?> = [Mz,Mz2] = Mz'Mz = 2!M'Mz =
24 (Ap+21,,)z, since MT M is a non negative symmetric matrix, then all eigenvalues are positive
and the theorem is hold.

Theorem 1.21 Let Gy 57 G2 be the complete product of two simple graphs, then the

complementary of this operation has following properties,
G1v G2 =G1+G2
Theorem 1.22 Let G + G2 be the union of G1 and Gs, then
p(G1+ G2, A) = p(G1,A) - p(G2,A)

Theorem 1.23 Let p(G1 7 G2) be the complete product of two simple graphs G1 and
G, then

p(G1 vV G2, ) = (1) p(G1,\)p(Ga, =X — 1) + (=1)" p(G2, A)p(G1, —A — 1)

(=14, A~ Dp(@a -A— 1)

If G is a k-regular graph , then the polynomial p(G, \) and p(G; 7 Ga, ) are given by the
following theorem.
Theorem 1.24(Sachs 1962) If G is connected and reqular of k, then p(G,)\) =

nA—n+k+1
U g G A

This is a very useful tool to calculate the characteristic polynomial of certain type of
graphs. We give an example below:

The graph obtained by deleting s disjoint edges from Ko, is called cocktail party graph,
denoted as Hog.

A+2—2s

p(Has) = (=1)% p(sP2, \)
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since the complement graph of a cocktail party graph is s disjoint edges K>, and

p(Py,\) = (A+1)(A—1)

then N
+2—12s

Hy,) = (-1)2———Z[-A(-2-2)°

() = (~1* =22 A= - 2)
Simplify this equation, We have

A+2—2s
H = ——- | — — —23
p(Ha0) = 22 (A (A - 2)

The spectrum of P is

1 -1
SpecPy =
p 2 <1 1)

2s—2 0 —2
SpecHos = ( y )

then the spectrum of Hsy is

1 s s—1

If Gy is a r1 regular graph and Gs is a r9 regular graph, then the characteristic polynomial of
the complete product of these two graphs is given by the following theorem.

Theorem 1.25 The characteristic polynomial of complete product of two graphs is,

_ PG Np(G2 A
p(G1V Ga, A) = (/\—7“1)(>\—7”2)[()\ 1)(A = 72) = niny).

Corollary 1.7  Suppose that a graph has two vertices v; and v; has same neighbor vertices
I', then the vector X whose only non-zero entries are x; = 1 and x; = —1 1is an eigenvector
of the adjacency matriz with eigenvalue 0, if I' has r vertices, then the multiplicity is at least
r—1.

Theorem 1.26  If the spectrum of the graph G contains an eigenvalue Ao with multiplicity
p > 1, then the spectrum of the complementary graph G contains an eigenvalue —\g — 1 with

multiplicity q,where p — 1 < ¢ <p+1.

1.7 Results from matrix theory

In this section, We study several characteristic polynomials of special graphs. We also
study the Rayleigh quotient of vectors and the largest minimal eigenvalue of matrix. In the end
of this section, we study the properties of circular matrix.

1. Empty graph G with n vertices its characteristic polynomial, p(G, A) = \™.

2. p(Kpy ) = (A —n+1)(A+ 1) L.
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3. each component of a regular graph of degree 1 is isomorphic with graph Ks,then k copy
of Ky is p(Ky,,\) = (A2 — 1)*.

4. p(Knyngs A) = (A2 — nyng)Amatn2=—2,

5. p(K1n,A) = (A2 —n)A"~ L.

n/2

—k

6. p(Puh) =S () [ " A28 — 17 (A/2). Where
k=0 k

sin[(n + 1) arccos(z)]

Unl) ===

is the Chebyshev polynomial of the second.

[n/2]
n n—=k
7. p(CpyN) = =2+ —1)k A2k — 9 cos(n arccos z/2) — 2
PO =2+ 3 >W%< . ) ( /2)

_ yn—k n k-1
8 oKy, p) = X FOE T =)+ 7)
In order to take a review of calculating the determinant, we give proof for 2 and 5.

Proof. Since the characteristic polynomial of K, is:

A =1 -1

-1 A -1
p(Knv)‘) = .

-1 -1 A

by the properties of determinant, we add all the other rows to the first row and take the common
factor A — (n — 1) then

1 1 ... 1
-1 x ... -1
p(Kn,A)=A—n+1)
-1 =1 ... A
add the first row to each other rows, finally, we have formula 2.

Proof. Since the characteristic polynomial of K ,, is:

A -1 -1 ... -1

-1 A 0o ... 0
p(Kl,n7 )‘) =
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multiple the first row by 1/ then add to every other rows, then expand this new determinant
by the first row then we get a symmetric determinant of the diagonal entries are A—1/X and all
other entries are —1/\. With the skill to calculate the symmetric determinant, we can easily
get the formula 5.

Some spectrum of certain graphs:

n—1 -1
1. SpecK,, = ;
1 n—1

b 0 —Vab
2. Spec(ns) = [ VO vab ),
1 a+b—2 1
2cosm/(n+1) 2cos2r/(n+1) ... 2cosnw/(n+1)
3. SpecP, = ;
1 1 1
2 2 2 . 2 -1
4. SpecC,, = cos 2r/n cos (n — L)m/n (n is odd);
1 2 2
2 2 2 e 2 -2 -2
5. SpecC,, = cos 2r/n cos (n —2)m/n (n is even);
1 2 .. 2 1
especially,
1+v5 —1+V5 1-V5 —1-+5
SpecPy = 2 2 2 2
1 1 1 1
o LHVh —14Vh 1-V6 -1V
Sp@CClO = 2 2 2 2
1 2 2 2 2 1

Sometimes we call K, is a star. According to the expression of complete bipartite graph’s

characteristic polynomial, we can easily have:

Spec(Ki ) = < vn 0 —Vn )

1 n-1 1

3 1 =2
Spectrum of peterson graph is SpecO3 = ( L5 4 )

We cite two important result from linear algebra. the proposition 1.1 is the relation between
the coefficients of the characteristic polynomial of a matrix and its principle minors; the second

result is about the circular matrix.
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Proposition 1.1  The coefficient of the characteristic a; equals the summation over all
principal minors of order i multiple by (—1)"~%.
An n X n matrix is said to be cyclic matrix if its ¢ — th row is obtained by a cyclic shift

1 — 1 steps of the first row, that is the cyclic matrix is determined by the first row.

010 -~ 00 o011 .- 00
0o 01 .- 00 000 .-~ 00
w = cow? =
1 0
0 0 1
S1 S9 83 -+ Sp_1 Sn
Spn 81 82 '+ Sp—2 Sp—1 N
s§= T : : ; SZZsjwjfl
S3 S84 S5 - S1 S2 =t
So 83 S84 - Sn S1

Since the eigenvalues of w is 1,w,w? ,w" !, where w = exp(2mi/n) it follows that the
n

eigenvalues of s are A\, = Zsjw(jfl)’”,r =0,1,...,n—1.
j=1
Since the adjacent matrix of a cycle C), is a circular matrix generated by the first row
ry = [0,1,0,--- ,1]T, then we can easily obtain the spectrum of C,, by the above properties of

circular matrix.

1.8 About the largest zero of characteristic
polynomials

Lemma 1.4 If the distinct eigenvalues of A(G) are \y > A > ... > A\, then A\ <
2e(n—1)

" )
Proof. By the lemma 1.1 and the summation of the eigenvalues of a matrix is —a; the
coefficient of the characteristic polynomial. We have:

n

Z)\i:—clzo

i=

1
)\i)\j = —¢€
i#]
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n

ixf = NP =2 Nidj =2
=1

i=1 i#]

AM=—e+ A3+ ...+ \)
M=2—(A+...+22)

By Cauchy-Schwaze inequality we have:

|/\2+>\3+...+)\n|<\/A§+/\§+...+)\%\/n—1
A< @2 - M) (n-1)
M <y/(2e =AM (n—1)

In fact, this theorem also can be proved by the corollary 2.2 and the matrix theorem. An-
other bound of the same type is A\; < v/2¢ — v + 1 the equation hold if and only if a component
is a complete graph or a star and other components are ko that are isolated edges. ( East China
Normal University Hongyuan 1988). If graph G have m edges and [ isolated vertices, then
A < V2e—v+1+1. (SHU Jin-long in 2000). Vladimir Nikiforov, Eigenvalues and degree
deviation in graphs, linear Algebra and Application 414(2006)347 — 360 gives another bound of
A let s(G) = > |d(v) — 2m/n], then

VeV (G)

1. 52/2712\/% <A —2m/n < \/@;

2. Me(G) + A p12(G€) = —1 +24/2s, for all 2 < k < n;

3. Ao+ A (G€) < =1 — 52 /2n3.

Theorem 1.27 Let G be a regular graph of degree k, then

1. k is an eigenvalue of G;

2. If G is connected, then the multiplicity of k is 1;

3. For any eigenvalue A of G, We have | A |< k.

Proof. 1. If uw = (1,1,...,1)!, A is the adjacent matrix of G, then we have Au = ku, since
there are k 1’s in each row, thus k is an eigenvalue of G.

2. Let * = (z1,m2,...,7,) denotes an non-zero vector for which Az = kx and suppose

that x; is an entry of x with the largest absolute value. Since (Az); = kx;, we have
Yx; = kx;, where 3 denotes summation over those % vertices v; which are adjacent to
all those vertices are adjacent to v;, by the maximal property of x;. It follows that
x; = xj, for all those vertices if G is connected we may proceed successively in this way,
eventually show that all entries of z are equal, thus x is a multiple of u and the space

of eigenvalue associated with the eigenvalue k has dimension 1.
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3. Suppose that Ay = Ay, y # 0 and let y; denote an entry of y which is largest in absolute

value. By the same argument as in (2), we have Xy; = Ay; and so
M s =1 2y IS 2]y <Kyl

thus | A [< &, as required.
We need a useful technique from matrix theory.
Theorem 1.28 (Schur) For any matriz A of order n there exist a U matriz of order n

and an upper triangle matriz R, that
UPAU=R or A=URU"

hold. Where the diagonal entries are the eigenvalues of A.

Corollary 1.8 If A is a Hermit matriz, then A ~ A, the diagonal entries are the eigen-
values of matriz A.

Let (x,y) denotes the inner product of the column vectors z,y. For any real nxn symmetric
matrix X and any real non-zero n x 1 column vector z, the number (z, Xz)/(z,z) is know as

the Rayleigh quotient, and written R(X, z) in matrix theory it is proved that
Amax(X) 2 R(X, 2) 2 Amin(X)  for all z#0

a result which has important applications in graph theory. Here, we give a simple proof.
Proof. since X is a real symmetric matrix, then there is a matrix UT = U~ that UTXU =
diag(A1, ..., A,) holds, suppose that Ay > Ay > ... > A, now

MI — X =UT(\ T —diag(Aq, ..., \))U >0

cause A\ = max{A1,..., A} then A\ —X\; 2 0,0 € (1,...,n). M I > X. The other inequality
prove in similar way.

Theorem 1.29  Suppose that A is a Hermit matriz of order n, eigenvalues \1 > ... = Ap,
then

1. R(kx) = R(z),k € C,k #0;

2. A < R(z) < Mg

3. A1 = maxR(x),\, = minR(x),z # 0.

Theorem 1.30 Letxy,xs,...,T, be the eigenvectors correspond to eigenvalue A1, s, .. .,

A, Tespectively, and Vij = Span{z;, it1,...,x;}, then

Ai =maxR(z), A; =minR(z), z¢€ Vi, x40
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Proof. Vx € Vij and x # 0, that = a;z; + ... + ajx;, then

N\ < R(X) = lail?Xi + |ait1|*Nig1 + - 4 NP _
a lail® + |aiv1|? + ...+ |a;]?

especially. If © = z;, then R(z) = \;, if # = z;, then R(z) = A;. So the theorem holds.
Theorem 1.31 Suppose that A and E are the Hermit matrices of ordern, B= A+ E,
and the eigenvalues of A, B and E are A\y > ... 2 Ap, 1 =2 ... = i and €1 = ... = €,, then

)\i+€n g.u’l <>\i+€15i:172a"'7n
Proposition 1.2 1. If H is an induced subgraph of G, then
)\max(H) < )\max(G)§ )\min(H) 2 )\min(G)

2. If the greatest and least degrees among the vertices of G are dmax(G), dmin(G), and the

average degree is dave(Q), then
dmax(G) 2 Amax(G) 2 davc(G) > dmin(G)

Proof. 1. We may suppose that the vertices of G are labeled so that the adjacency matrix
of G has a leading principal minors Ay, which is the adjacency matrix of subgraph H. Let z
be chosen such that Agzg = Amaxzo and (20, 20) = 1. Furthermore, let z be column vector with

|V (H)| rows formed by adding zero entries to vector zp. Then
Amax(Ao) = R(Ao, 20) = R(4, 2) < A(A)

that is,
)\max(H) < )\max(G)

The other inequality is proved similarly.
2. Let u be the column vector each of whose entries are +1, then if n = |V(G)| and d; is

the degree of the vertex v;, we have
R(A,’LL) = (Z a’ij)/n = Zdl = davc
i, i

the Rayleigh quotient R(A,u) is at most Apmax(A) that is Apmax(G), and it is clear that the

average degree is not less than the minimum degree. Hence

)\max(G) = dave > dmin(G)
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Finally, let X be an eigenvector corresponding to the eigenvalue A\g = Amax(G), and let z;

be a largest positive entry of X. By an argument similar to the used in (1) we have
)\0.23]' = (/\0X)j = (AX)] = le S djxj < dmax(G)xj

where the sum Y is take over the vertices v; adjacent to vj, Thus Mg < dmax(G).

Proposition 1.3([3]) Let X be a symmetric matriz, partitioned in the form X =

P
( o 2 >, where P and R are square symmetric matriz, then

)\max<X) + )\min (X) < )\max (P) + )\max (R)

Proof. Let A = Apin(X) and take an arbitrary € > 0, then X' = X — (A —¢)I is a positive

definite symmetric matrix, partitioned in the same way as X, with
PP=P-\-¢), Q@=Q, R=R-(\—-¢)l
By appling the method of Rayleigh quotient to matrix X', it can be show that
Amax (X') < Amasx(P') + Amax (R)
Thus, in terms of X, P and R, we have
Amax(X) — (A —¢€) < Apax(P) — (A —€) + Anax(R) — (A —¢)

and since the arbituary of € and A = Apax(X), we have the result.

Theorem 1.32 Let A be a real symmetric matriz, partitioned into t*sub-matriz A;; in
such that a way that the row and the column partitioned in the same, in other words, each
diagonal sub-matriz A;; are square, then

)\max(A) + (t - 1>)\min (A) < Z )\max(Aii)

i=1

Proof. We proof this result by induction on ¢. It is true when ¢ = 2, by the proposition

1.3 Suppose that it is true when ¢t = T' — 1, then we show that is hold when t = T'. Let A be
partitioned into ¢?> sub-matrixes,in the manner stated, B be the matrix with the last row and

the last column deleted. By the proposition1.30,
)\max(A) + )\min(A) < Amax(B) + )\max(ATT)

and by the induction hypothesis,

T-1

/\max(B) + (T - 2)/\min(B) S Z /\maX(Aii)

i=1
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NOW Amin(B) = Amin(4), thus adding the two inequalities,we have the result for ¢ = T', and the
general result follows by induction.

Let v1, v, ..., v, be orthogonal unit eigenvectors to the eigenvalues of Laplacian matrix @
of G, then

= min z,T);
Ha:H:l,:L’J_Span{vl,...,vk_1}<Q ’ >7

A = i A
K MC%",dl;’r}riI(lM):kfl{HzH:Hll,?:}J(_(M)< )}

this result we can find in R.Horn, C.Johnson, Matrix Analysis, Cambridge University Press,
Cambridge, 1985, p:561.

Theorem 1.33 Let A1 > Ao > ... > A\, be the eigenvalues of adjacency matriz A,
and 0 = u; < uz2 < ... < Uy, then §(G) < Mp+ur < A, and A\(G) + Mp—p12(G°) =
0(G)— A(G) — 1, for2 <k < n.

Proof. Let y be a vector associate with the largest eigenvalue of A and |ly|| = 1 and also

y L Span{vy,...,vx_1}. Let y = (y1,...,Yn), we find that

we=(Qy.y) = > d)y: - (Ay,y)
veV(G)
A(G) — max (Az, )

|z||=1,zLSpan{vi,...,vx—1}

{ max (Az,z)}

< min
MCR™,dim(M)=k—1 "||z||=1,xL(M)

— A(G) - M (G)

As to the second inequality, it is well know that ug(G) + up—k12(G) = n for all 2 < k < n,
n+ A + A—k12(G9)
subsitude ug(G) + un—r+2(G°) = n into above equation we have
2 0(G)+(G°) 26(G)+n—1—-A(G)

simplify it we will get the result.

Theorem 1.34 Let \o(G) be the second largest zero of G and A\, (G€) be the smallest
zero of G°, then Aa + A\, (G¢) < —

Readers can find Vladimir Nikiforov, Eigenvalues and extremal degrees of graphs,

Linear Algebra and its Applications 419(2006)735 — 738.

Theorem 1.35 [Courant-weyl inequlity] Let \y > Ao > ... = A\, be the eigenvalues of a
symmetric real matriz, if A, B and C are all the symmetric real matrizes and C = A+ B, then
An—j—i(C) 2 Ap—i(A) + A (B).
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1.9 Spectrum radius

Suppose that A = (a;;) € R™*", if a;; > 0,4 =1,2,...,m;j = 1,2,...,n, then we call
A is a non-negative matrix, write as A > 0. If a;; > 0, we call A is positive matrix, write as
A > 0. A transpose matrix P = H E(i,j), that is a serious elementary operation of the first
type.

Definition 1.11 A matriz is reducible if there is a transpose matriz such that

pAPT — Ay App
0 A

where A1y is a square matriz of order v, Ags is a square matriz of order n — r. Otherwise, A
1s irreducible.

Non-negative matrix has two types, one is reducible matrix and another is irreducible
matrix. In 1907, Perron proved an important theorem about the relation between the positive
matrix’s largest eigenvalue and the correspondence eigenvector. We call the largest eigenvalue
is spectrum radius (A1) and the eigenvector correspond to largest value is Perron vector, then
we have several theorems below:

Theorem 1.36(Perron) Suppose that A is a positive matriz, then

1. A1 > 0, and the Perron vector x > 0,z € R™;

2. all other eigenvalue |N\;| < A1;

3. A1 has multiplicity one.

Theorem 1.37(Perron-Frobenius) If a connected graph G with at least two vertices,then

1. A1 > 0,with multiplicity 1;

2. there exists a unique positive unit eigenvector corresponding to Ai;

3. all other eigenvalue |\;| < A1;

4. deleting any edge from G, A\ will decrease.

Theorem 1.38([20]) Let A1, Ao, ..., A\, be the eigenvalues of G, and the uy,ug, ..., Up—1

be eigenvalues of G — u,then

Theorem 1.39([21]) Let G be a connected graph and \; be the spectral radius of A(G),
u and v be two vertices of G. Suppose that {vi,vs,...,vs} € NW)\N(u), (1 < s < d(v))
and x = (x1,T9,...,x,) is the Perron vector of A(G), where x; corresponds to the vertex
vi(1 < i < n). Let G* be the graph obtained by deleting the edges (vv;) and adding the edges
uv;, (1 < i < s), then \(G) < A\ (G*).
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Theorem 1.39 indicates that the spectral radius is increase when the graph becomes more
concentrate, the star has the largest eigenvalue, that is v/n — 1 and the path has the smallest

eigenvalue, that is 2 cos and for matching polynomial hold as well. Reads may refer to

7r

n+1’

Bolian Liu, 2005, Combinatorial Matriz Theory.
Exercise

In this book, if we not specially inform you, take all graphs as simple connected graphs.

n
1. If G is a connected simple graph of order n, then & < < ) >

n
2. under the condition of exercise 1’s condition ¢ < ( 5 ) if and only if G =2 K,,.

3. If e(K(m,n)) = mn.

4. If G is a connected simple graph of order n, then € < n?/4.

5. We say a graph is self-complement, write as G = G¢. If G is self-complement then
n = 0,1(mod4).

6. & If G is a simple graph and the eigenvalues of A(G) are different, then the automorphism
group of G is commutative.

7. Every simple graph of order n is isomorphism to a sub graph of K.

8. Every subgraph of bipartite graph is bipartite graph.

9. & G is a simple graph, for any integer number n for 1 < n < v —1,if v > 4 and all
induced subgraph of order n has same numbers of edges, then G = K, or G = K¢

10. Prove that 6 < 2¢/v < A.

11. If G is k-regular bipartite graph (k > 0) have an vertex departing (X,Y), then | X| =

Y.

12. Let A\; > A2 > ... >\, be the eigenvalues of A(G), then \; < 1/2¢(n — 1)/n.

13. For a simple graph, positive integer sequence (8,6, 5,4, 3,2,2) and (6,6,5,4,3,3,1) are
not a graph’s degree sequence.

14. For a simple graph, if A(G) has n different eigenvalues, then the automorphisms group
I'(G) is Abelian.

Group Project

For any simple graph G and a positive integral m, (m < n), n is the order of the graph,

there exist a m partite spanning subgraph H, which satisfy the inequality
1
(1= —)e(G) < &(H) < T

where T, ,, is the Turan graph, how to find this spanning bipartite graph?



